
Proc. SOSP 2014, Nov. 26–28, 2014, Stuttgart, Germany
Copyright c© 2014 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

Using Java EE ProtoCom for SAP HANA Cloud∗

Christian Klaussner
Heinz Nixdorf Institute
University of Paderborn

Zukunftsmeile 1
33102 Paderborn, Germany
cfk@mail.uni-paderborn.de

Sebastian Lehrig
Software Engineering Chair

Chemnitz University of Technology
Straße der Nationen 62

09107 Chemnitz, Germany
sebastian.lehrig@informatik.tu-chemnitz.de

Abstract: Performance engineers analyze the performance of software architectures
before their actual implementation to resolve performance bottlenecks in early devel-
opment phases. Performance prototyping is such an approach where software archi-
tecture models are transformed to runnable performance prototypes that can provide
analysis data for a specific target operation platform. This coupling to the opera-
tion platform comprises new challenges for performance prototyping in the context
of cloud computing because a variety of different cloud platforms exists. Because the
choice of platform impacts performance, this variety of platforms induces the need for
prototype transformations that either support several platforms directly or that are eas-
ily extensible. However, current performance prototyping approaches are tied to only
a small set of concrete platforms and lack an investigation of their extensibility for new
platforms, thus rendering performance protoyping ineffective for cloud computing.

To cope with this problem, we extended Palladio’s performance prototyping ap-
proach ProtoCom by an additional target platform, namely the SAP HANA Cloud,
and analyzed its extensibility during the extension process. In this tool paper, we fo-
cus on illustrating the capabilities of our extension of ProtoCom. For this illustration,
we use a simple example system for which we create a ProtoCom performance pro-
totype. We particularly run this prototype in the SAP HANA Cloud, thereby showing
that our extension can efficiently be applied within a practical context.

1 Introduction
Performance engineers analyze the performance of software architectures before their
actual implementation to resolve performance bottlenecks in early development phases.
This early detection and resolving of performance problems reduces fix-it-later costs and
promises a high customer satisfaction, due to a high quality of service right from the be-
ginning of system operation. Performance prototyping is such an approach to performance
engineering. In performance prototyping, engineers transform software architecture mod-
els to runnable performance prototypes. These prototypes can provide analysis data for a
specific target operation platform.

The coupling of performance prototypes to the operation platform comprises new chal-
lenges in the context of cloud computing. In cloud computing, a variety of different cloud

∗The research leading to these results has received funding from the EU Seventh Framework Programme
(FP7/2007-2013) under grant no 317704 (CloudScale).

17

platforms exists. Because the choice of platform impacts performance, this variety of plat-
forms needs to be covered by transformations to performance prototypes [LLK13]. There-
fore, prototype transformations either need to support several platforms directly or have
to be easily extensible. However, current performance prototyping approaches are tied to
only a small set of concrete platforms and lack an investigation of their extensibility for
new platforms, thus rendering performance prototyping ineffective for cloud computing.

In related work, initial attempts have been made to support a larger quantity of plat-
forms [Bec08, GL13]. However, such attempts remain on a conceptual level and do not
provide transformation implementations that would make performance prototyping more
efficient. Other works provide such implementations but are tied to single platforms only.
For example, the implementation by Lehrig and Zolynski [LZ11] only has support for
Java SE as a target platform. To the best of our knowledge, no related approach investi-
gates the extensibility of performance prototypes.

To cope with this problem, we extended Palladio’s Java SE performance prototyping ap-
proach ProtoCom [Bec08] by an additional target platform and analyzed its extensibility
during the extension process. We decided to enrich ProtoCom by Java EE capabilities such
that we could reuse first conceptual ideas of our previous work [GL13]. Moreover, we use
the SAP HANA Cloud as concrete target platform because it represents a practically used
cloud computing environment with Java EE support.

The contribution of this tool paper is an illustration of the capabilities of our ProtoCom
extension. For this illustration, we use a simple example system for which we create a
Java EE ProtoCom performance prototype. We particularly run this prototype in the SAP
HANA Cloud, thereby showing that our extension can efficiently be applied within a prac-
tical context. For our results regarding the extensibility of ProtoCom, we refer to Klauss-
ner’s Bachelor’s thesis [Kla14] (we identify both, implementation parts that are easily
extensible and parts that can be improved regarding extensibility). His thesis particularly
gives a complete technical overview of our ProtoCom extension.

This paper is structured as follows. We introduce our example system in Sec. 2. We
use this system throughout our paper as running example. In Sec. 3, we describe the
fundamentals of our work (performance prototyping with ProtoCom, Java EE, and the
SAP HANA Cloud). Afterwards, we describe our Java EE extension to ProtoCom in
Sec. 4. This extension allows us to use ProtoCom within SAP HANA Cloud in Sec. 5.
In Sec. 6, we discuss related work in the area of performance prototyping. We close this
paper by giving concluding remarks and an outlook on future work in Sec. 7.

2 Running Example: The Alice&Bob System

As running example, we use the Alice&Bob system as illustrated in Fig. 1. This system
consists of two Java EE servers: JavaEE-Server-A allocates the Alice component that pro-
vides the interface IAlice with the operation callBob() and JavaEE-Server-B allocates the
Bob component that provides the interface IBob with the operation sayHello(). The IAlice
interface is provided to a user who can invoke its operation through a client-side technol-

18

JavaEE-Server-BJavaEE-Server-A

BobAlice

User

CPU
Scheduling: Processor Sharing
Processing Rate: 100 Work Units/Sec.

Closed Workload Usage Scenario
Population: 10
Think Time: 1 Sec.

+ callBob()

IAlice

+ sayHello()

IBob Resource Demands
CPU Demand:
DoublePMF[(20;0.2)(30;0.3)(50;0.5)]

Figure 1: Alice&Bob System

ogy like a browser. This invocation can be received by a component on the server side –
in our case by the Alice component implementing the IAlice interface.

Furthermore, we annotated performance-relevant information to the Alice&Bob system
using yellow sticky notes. These sticky notes state that (1) the user population is 10 with a
think time of 1 second within a closed workload, (2) the CPU of JavaEE-Server-B follows
a processor sharing (round-robin) scheduling strategy while processing with 100 work
units per seconds, and (3) calls to sayHello() cause a CPU demand as specified by the given
probability mass function. The latter specifies that 20 CPU work units are demanded in
20% of the cases, 30 CPU work units are demanded in 30% of the cases, and 50 CPU work
units are demanded in 50% of the cases.

3 Fundamentals

In this section, we describe the fundamentals needed to understand our extension to the
performance prototyping approach ProtoCom. We accordingly describe the state-of-the
art in performance prototyping with ProtoCom in Sec. 3.1. Afterwards, we describe the
target platform for our extension – Java EE and the SAP HANA Cloud – in Sec. 3.2.

3.1 Performance Prototyping with ProtoCom

Software engineers and architects aim to analyze quality attributes of a software system,
e.g., performance, early in the design process in order to avoid costs for subsequent adjust-
ments. Performance prototyping is an approach that facilitates such analyses by simulating
the performance of a software system in a realistic execution environment and under dif-
ferent load levels.

19

Palladio supports engineers in efficiently constructing such performance prototypes. For
this support, the Palladio Component Model (PCM) provides a component-based Archi-
tecture Description Language (ADL). The PCM allows engineers to create a formalized
model of the components and performance-relevant properties of a software architecture,
similar to the model of our Alice&Bob system illustrated in Fig. 1.

After such a PCM model is created by performance engineers, it serves as input for the
code generator ProtoCom, which transforms it into a runnable performance prototype for
the desired target technology. Currently, ProtoCom supports the generation of perfor-
mance prototypes for three target technologies: Java SE with RMI, Java EE with EJBs
(Enterprise Java Beans), and Java EE with Servlets for the SAP HANA Cloud, which we
introduce in this paper.

Our implementation transforms components from the model to Java EE Servlets. These
Servlets can communicate via HTTP (cf. Sec. 4), while all previous implementations were
based on RMI communication for distributing components. When running a generated
performance prototype, an external HTTP load generator, e.g., JMeter, is used to simulate
users interacting with the system according to the usage scenario specified in the model.
Meanwhile, the performance prototype takes several mesasurements, e.g., response times,
which allow a subsequent examination of the software architecture’s performance. We
give a more detailed description of this workflow in Sec. 5.

3.2 Java EE and SAP HANA Cloud

The Java Enterprise Edition (Java EE) is a set of specifications and APIs for Java that fa-
cilitate the development of enterprise software. This type of software is usually run on
one or more servers (as illustrated in Fig. 1) and makes use of web technologies. There
exist several implementations of the Java EE specifications, e.g., GlassFish and WildFly
(formerly JBoss). Additionally, some projects implement only a subset of the specifica-
tions. For example, Apache Tomcat1 implements Servlets, which are Java classes that can
respond to requests. A common use case for Servlets is the HTTP request-response model
for typical websites.

The SAP HANA Cloud is a Platform-as-a-Service (PaaS) that provides a Java EE environ-
ment and a cloud infrastructure for running enterprise applications. It is based on Apache
Tomcat and includes additional services for applications, e.g., a document service that can
be used to store unstructured or semi-structured data.

4 Java EE ProtoCom

Adding Java EE for the SAP HANA Cloud as target technology for ProtoCom required the
implementation of new transformations and a new framework (the ProtoCom “runtime”).

1http://tomcat.apache.org

20

When generating code from PCM instances, the entities and concepts of the source model
have to be mapped to constructs of the target language. Although both the PCM and Java
have similar constructs, e.g., interfaces and components/classes, they differ in expressive-
ness. Therefore, a one-to-one mapping is sometimes impossible. Tab. 1 lists the PCM
entities and concepts regarded in our extension together with their respective Java map-
ping. Especially the provided and required roles of components need specific patterns to
be transformed correctly [Kla14].

PCM Entity/Concept Java
Interface Interface
Component Component class
Provided role Port class
Required role Context class
System System class
Assembly context Component class instance
Call action RPC over HTTP
Control flow Control flow
Resource environment Resource environment class
Allocation Allocation class
Usage scenario [External]

Table 1: Mapping of PCM entities and concepts to Java, cf. [GL13, Kla14]

The addititions we made can be grouped intro three categories: inter-component commu-
nication, user interface, and load generator.

4.1 Inter-Component Communication

For the communication between components across resource container boundaries (i.e.,
ExternalCallAction entities in PCM), we use a custom, lightweight RPC protocol based on
JSON and HTTP. Compared with other RPC protocols like SOAP, our custom protocol is
easier to process in intermediary components and tools involved in the execution of the
performance prototype. For example, when using Apache JMeter for the simulation of
usage scenarios, data has to be exchanged between JMeter and the performance prototype.
Thanks to JMeter’s scripting capabilities (including JavaScript) the data received from the
performance prototype can be processed without any manual parsing as would be the case
with SOAP and XML.

Conceptually, our RPC method works similar to Java RMI. Components register them-
selves with a unique name at a central registry that is accessible via a Servlet. Other
components can then contact this registry and obtain references to other named compo-
nents. After a connection is established, method calls to remote components are initiated
by sending the method name, parameter types, and arguments (serialized to JSON) to the
target component, as shown in List. 1.

21

The formalParameters array consists of the type names of the formal parameters and is
used – together with the name – to find the correct method to invoke at the destination,
whereas the actualParameters array specifies the actual type names of the serialized ar-
guments. These type names are required during deserialization in order to recreate the
serialized objects. For example, the argument in List. 1 is deserialized as StackContext
object and passed to the callBob0 method which expects a StackContext argument. In this
case, the serialized argument consists of an empty JSON object, instructing the deserializer
to create a new StackContext object to be passed to the method.

1 {
2 "name":"callBob0",
3 "formalTypes":["de.uka.ipd.sdq.simucomframework.variables.StackContext"],
4 "actualTypes":["de.uka.ipd.sdq.simucomframework.variables.StackContext"],
5 "arguments":[{}]
6 }

Listing 1: RPC protocol representation of a call to Alice’s callBob method

4.2 User Interface

Since the Java EE performance prototypes run on the SAP HANA Cloud, they are inac-
cessible through a console. Therefore, we developed an HTML user interface that can be
accessed through a web browser. Fig. 2 shows a screenshot of the user interface used to
operate the performance prototype generated from the Alice&Bob system introduced in
Sec. 2. It allows performance engineers to specify the location of the central component
registry and to start particular modules, i.e., startable entities of the performance prototype
like resource containers (that start all allocated components) and systems. Additionally, it
provides downloads for the transformed usage scenarios (JMeter files) and analysis results.

4.3 Load Generator

In order to generate load on the performance prototype, we provide an interface for ex-
ternal load generators, e.g., Apache JMeter. The ProtoCom transformations automatically
generate a JMeter test plan for each usage scenario in the model. ExternalCallActions are
realized by sending HTTP requests to the respective components according to the RPC
protocol described in Sec. 4.1.

22

Figure 2: The user interface of the performance prototype

5 Using Java EE ProtoCom for SAP HANA Cloud

This section describes how ProtoCom is used in the SAP HANA Cloud. First, it explains
how the abstract resource demands from the PCM are translated to actual demands on the
hardware of the cloud platform. Afterwards, it shows the workflow of transforming and
executing performance prototypes.

5.1 Hardware Calibration

Before running a performance prototype, the abstract resource demands for CPU and HDD
specified in the SEFFs of the PCM components have to be translated to demands for the
hardware that the performance prototype is running on. For that purpose, ProtoCom pro-
vides a set of calibration strategies, e.g., Fibonacci, which simulates CPU intensive tasks
with minimized RAM access [LZ11]. The calibration computes several iterations – in this
case the nth Fibonacci numbers – and measures the time required for these computations.
The results are stored in a calibration table for later lookup, as shown in Tab. 2. When a
demand from the model has to be translated to a real hardware demand, the calibration ta-
ble is used to find the iteration count n for the given demand. For example, a CPU demand
of 0.036 seconds would be achieved by computing the 40th Fibonacci number.

2Results taken from http://www.cs.utsa.edu/~wagner/CS3343/recursion/fibrecurs2.html

23

n Time
10 0.032 Sec.
20 0.033 Sec.
30 0.035 Sec.
40 0.036 Sec.
50 0.038 Sec.
.

Table 2: A calibration table for the Fibonacci strategy2

Lehrig and Zolynski [LZ11] validate such calibration tables by creating a model with a
processing resource that has a processing rate of 1000 units and a closed workload usage
scenario in which a single user repeatedly invokes a task that consumes 1000 units. Ideally,
the response time of this usage scenario should consume a time of 1 second. The results
for the Large Chunks HDD calibration show that the mean response time of the usage
scenario is indeed around 1 second, with deviations resulting from external factors, e.g.,
process scheduling behavior controlled by the operating system.

The calibration of the hardware resources is a time-consuming task and has to be per-
formed once for each hardware configuration. Regarding the SAP HANA Cloud, all cali-
bration strategies of ProtoCom work for both local installations (development and testing)
and the actual cloud platform.

5.2 Prototyping Workflow for SAP HANA Cloud

This section describes the typical workflow of performance prototyping with ProtoCom
for SAP HANA Cloud. The activity diagram in Fig. 3 shows all steps involved.

Create Model

Transform with
ProtoCom

Run Usage Scenario
(JMeter)

Calibrate
Environment Start Modules

Download+Examine
Results

Adjust Model

[accepted results] [found problem]

Figure 3: Performance prototyping workflow with ProtoCom for SAP HANA Cloud

24

Performance engineers start with creating a model of the software architecture to exam-
ine. Afterwards, they calibrate the environment that the performance prototype will run
on. This can either be the environment of the cloud infrastructure or a local installation of
the SAP HANA Cloud runtime. Subseqently, the model is transformed to a performance
prototype and deployed on the target platform. At this point, performance engineers inter-
act with the user interface illustrated in Fig. 2. They start the modules, i.e., the resource
containers and the system, and download the generated JMeter test plan. Loading this test
plan into JMeter allows them to configure and run the measurements.

Finally, the results of the analysis are provided as a download in the user interface. Per-
formance engineers examine these results in the Palladio-Bench and decide if the model
needs further improvements, e.g., caused by a performance bottleneck, or if the results
are satisfying. In this case, software engineers can start with the implementation of the
architecture.

Following this workflow for our Alice&Bob system shows that the performance prototype
generated from the model in Fig. 1 can be deployed in the SAP HANA Cloud to take
performance measurements. Evaluating the results of the prototype and comparing them
to the results of ProtoCom for Java SE with RMI is part of our future work.

6 Related Work

Besides works on ProtoCom, there are only a few approaches on performance prototyp-
ing. Becker et al. [BDH08] describe these approaches and their limitations compared to
ProtoCom in their related work. In this section, we therefore only focus on related work
on ProtoCom directly.

In his PhD thesis, Becker [Bec08] provides the groundwork for ProtoCom and for trans-
forming PCM instances to performance prototypes using Java EE EJBs (Enterprise Java
Beans). However, the performance prototypes generated by these transformations suffer
from several usability issues. For example, the generated code requires manual adjust-
ments after the transformations. Furthermore, the deployment process of the generated
performance prototypes proved to be inefficient.

Building on this work, Lehrig and Zolynski [LZ11] present an improved version of Pro-
toCom that aims to resolve these shortcomings. They extend the transformations and the
framework of ProtoCom such that the generated performance prototypes target the Java SE
technology and use Java RMI for inter-process communication. However, the transforma-
tions in this version of ProtoCom proved to be slow and inextensible due to the use of
Xpand3 templates as a means for model-to-text transformations. Therefore, Lehrig and
Zolynski provide a reimplemented version of ProtoCom (“ProtoCom 3”) [Kar] that re-
places the Xpand templates with templates for the programming language Xtend 24. This
version of ProtoCom served us as a good basis for analyzing the extensibility of ProtoCom.
As Klaussner describes in his Bachelor’s thesis [Kla14], the new transformation parts in-

3http://www.eclipse.org/modeling/m2t/?project=xpand
4http://www.eclipse.org/xtend

25

deed provide a good extensibility. However, some parts of ProtoCom’s generic framework
still provide room for improvement regarding extensibility [Kla14].

Since the release of Becker’s PhD thesis, a new version of Java EE EJBs was published,
providing features that simplify the transformations. Furthermore, there is a need for
performance prototype transformations targeting multiple platforms [LLK13]. These de-
velopments led to the addition of new Java EE EJB transformations by Giacinto and
Lehrig [GL13]. However, these transformations are provided only on a conceptual level
and also lack an implementation. In our work, we provide such a Java EE implementation
and use it within the SAP HANA Cloud, thus making our approach more efficient.

7 Conclusions

In this tool paper, we introduce a novel ProtoCom version that is capable of automati-
cally generating Java EE performance prototypes that can directly operate within the SAP
HANA Cloud (out-of-the-box). In this context, we give an overview of novel Java EE
features in ProtoCom and describe how generated performance prototypes are used within
the SAP HANA Cloud.

Performance engineers can now efficiently generate performance prototypes based on
Java EE. Engineers achieve best efficiency within the SAP HANA Cloud because our
ProtoCom version is capable of using dedicated SAP HANA Cloud features such as its
document service (e.g., to store calibration tables). However, engineers can now also
analyze other Java EE platforms (Glassfish, Tomcat, etc.) more efficiently because our
ProtoCom version introduces features shared among all of such platforms (e.g., RPC over
HTTP communication). Here, we profit from the standardization process behind Java EE.
Furthermore, we showed that engineers can easily extend ProtoCom if new requirements
arise [Kla14].

In future work, we want to conduct several case studies within the SAP HANA Cloud
using our novel ProtoCom version. We plan to reuse the case studies from our earlier work
with ProtoCom in virtualized environments [LZ11]. This reuse will allow us to compare
our previous results with new results gained within a less-controlled environment (the
SAP HANA Cloud), eventually leading to assessing the predictability of cloud computing
environments.

References

[BDH08] Steffen Becker, Tobias Dencker, and Jens Happe. Model-Driven Generation of Perfor-
mance Prototypes. In Samuel Kounev, Ian Gorton, and Kai Sachs, editors, Performance
Evaluation: Metrics, Models and Benchmarks, volume 5119 of Lecture Notes in Com-
puter Science, pages 79–98. Springer Berlin Heidelberg, 2008.

[Bec08] Steffen Becker. Coupled Model Transformations for QoS Enabled Component-Based
Software Design. PhD thesis, University of Oldenburg, Germany, January 2008.

26

[GL13] Daria Giacinto and Sebastian Lehrig. Towards Integrating Java EE into ProtoCom. In
KPDAYS, pages 69–78, 2013.

[Kar] Karlsruhe Institute of Technology. ProtoCom - SDQ Wiki. http://sdqweb.ipd.kit.
edu/wiki/ProtoCom. Retrieved: 07/12/2014.

[Kla14] Christian Klaussner. Extensible Performance Prototype Transformations for Multiple
Platforms. Bachelor thesis, Software Engineering Group, University of Paderborn, Soft-
ware Engineering Group, Paderborn, Germany, July 2014.

[LLK13] Michael Langhammer, Sebastian Lehrig, and Max E. Kramer. Reuse and Configuration
for Code Generating Architectural Refinement Transformations. In VAO ’13. ACM, 2013.

[LZ11] Sebastian Lehrig and Thomas Zolynski. Performance Prototyping with ProtoCom in a
Virtualised Environment: A Case Study. In Proceedings to Palladio Days 2011, 17-
18 November 2011, FZI Forschungszentrum Informatik, Karlsruhe, Germany, November
2011.

27

