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Abstract: Architecture-level evaluations of Palladio currently lack support for the anal-
ysis of the power efficiency of software systems and the effect of power management
techniques on other quality characteristics. This neglects that the power consumption
of software systems constitutes a substantial proportion of their total cost of owner-
ship. Currently, reasoning on the influence of design decisions on power consumption
and making trade-off decisions with other Quality of Service (QoS) characteristics
is deferred until a system is in operation. Reasoning approaches that evaluate a sys-
tem’s energy efficiency have not reached a suitable abstraction for architecture-level
analyses. Palladio and its extension SimuLizar for self-adaptive systems lack support
for specifying and reasoning on power efficiency under changing user load. In this
paper, we (i) show our ideas on how power efficiency and trade-off decisions with
other QoS characteristics can be evaluated for static and self-adaptive systems and (ii)
propose additions to the Palladio Component Model (PCM) taking into account the
power provisioning infrastructure and constraints.

1 Introduction

Palladio [BKR09] enables the evaluation of quality characteristics such as performance, cost
or reliability for component-based software systems at early design stages. By predicting
the performance and reliability of software systems it is possible to reason on design
alternatives and infer whether agreed upon Service Level Agreements (SLAs) can be
maintained. While Palladio accounts for the execution environment of software, its focus
is on software-centric design decisions. Currently Palladio has limited support for data
center design and sizing decisions. In particular, power consumption or provisioning are
not considered although they are a major cost-factor in data centers. Power consumption
accounts for roughly 15% of a data center’s Total Cost of Ownership (TCO) [GHMP08]. A
data center needs to be equipped with suitably sized power provisioning infrastructure to
avoid risking blackouts under peak load. Cost of an additional Watt of provisioned peak
power is estimated around $11 to $12.5 [FWB07, GHLK+12]. When power provisioning
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and cooling costs are considered, the cost associated with power consumption is responsible
for 40% of a data center’s TCO [GHMP08].

Even though power consumption decisively determines the TCO of a software system it is
currently not sufficiently considered on an architectural level. Tradeoff decisions between
power consumption and other quality dimensions are deferred to deployment time. The
impact of design decisions on the energy efficiency of a software system can only be
determined by accounting for the power consumption characteristics of the deployment
environment.

Previous work on energy consumption analysis of software architectures focuses on spe-
cific architectural styles [SEMM08]. As it focuses on power consumption induced by
communication it cannot be applied to predict the effect of individual design decisions
on power consumption. Other approaches make limiting assumptions regarding the usage
context [GWCA12] or application characteristics [MBAG10] which restrict their applica-
bility outside of their specific problem domain. Brunnert et al. [BWK14] introduce the
specification and evaluation of power consumption characteristics to Palladio. The authors
assume power consumption to follow the same pattern for all physical machines. Even
though a fixed model may accurately capture power consumption of current machines,
it likely will become inaccurate in the future when considering recent trends in energy
proportionality of physical machines [HP13]. Brunnert et al. perform an average case
power consumption analysis. Consequently, it is not possible to identify phases in which
the power consumption surpasses critical limits. As electricity pricing schemes usually
factor in both peak power consumption and total energy consumption it is critical to take
into account both average and peak power consumption for the modeled system [ZWW12].

This paper proposes (i) an approach enabling trade-off decisions between multiple quality
characteristics of static and self-adaptive software systems. Our approach accounts for
the operation of software systems in a data center. Our second contribution is (ii) an
explicit model of the power consumption of software systems and the power provisioning
infrastructure integrated into Palladio. The paper describes the Power Consumption Ana-
lyzer (PCA) approach leveraging the model and allowing continuous power consumption
analysis. It supports reasoning on maintaining power consumption thresholds leveraging
Palladio simulations and analysis of power-conscious self-adaptation tactics [PLL14] on
an architectural level. Power consumption properties are evaluated in a post-simulation
analysis that requires no modification of the simulation. In order to enable the analysis of
power-conscious self-adaptation tactics, we extend the Palladio-based SimuLizar approach
[BLB13] to support power consumption evaluations at intra-simulation using our PCA.

We show that our approach can be applied to evaluate whether limits in power consumption
are adhered to for a given usage context. We are able to identify peaks in power consumption
and violations not only for individual physical machines but also for Power Distribution
Units (PDUs). By accounting for peak power consumption we improve the prediction of a
data center’s TCO when compared to previous work [BWK14].

This paper is structured as follows. Section 2 outlines foundations of our approach. Section
3 discusses related work. Section 4 introduces our model extensions to PCM. Section 5
sketches how the PCA interprets these model extensions to support power consumption
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analysis. Finally, Section 6 summarizes the work presented in this paper and outlines our
plans for future work.

2 Foundations

The Palladio [BKR09] approach enables software architects to predict quality character-
istics of a component-based software architecture. The architecture is specified in the
Palladio Component Model (PCM). Software systems specified in PCM are assumed to
be static: PCM does not include a specification of architectural runtime adaptations. Qual-
ity characteristics of a system defined in PCM can be predicted using analytical solvers
[KBH07, KR08] or simulators [BKR09, MH11, BBM13].

Individual modeling concerns in PCM are separated into specialized submodels or views.
PCM encompasses an explicit structural view on the hardware deployment environment
onto which software components are deployed. The deployment environment is specified
in the Resource Environment model. The Resource Environment model consists of a set
of nested Resource Containers. Outer containers represent physical parts of a data center
such as racks and compute nodes, whereas inner containers serve as operating system or
virtualization layers. Resource Containers host a set of ProcessingResourceSpecifications
where each specification represents a resource to be used by components, e.g. CPU or
HDD.

SimuLizar by Becker et al. [BBM13, BLB13] extends Palladio to enable a systematic design
of self-adaptive software systems. Self-adaptive software systems adapt their configuration
at run-time to cope with changing environmental properties such as varying user load. One
example for such a reconfiguration is the migration of a virtual machine from an over-
to an under-utilized node. Reconfigurations are the outcome of self-adaptation tactics.
Becker et al. subdivide tactics into “a condition (input) and a self-adaptation action (output)”
[BLB13]. The condition specifies when a self-adaptation action is triggered depending
on measurements taken via system probes. Probes are attached to PCM in the Palladio
Measurement Specification (PMS) model. Currently, the PMS only allows to capture
performance-centric measurements such as the response time or utilization. Analysis of
the self-adaptive system is carried out with the SimuLizar simulator. The simulator allows
predicting quality characteristics of a self-adaptive software system specified according
to the SimuLizar approach. Software architects can use the provided simulative analysis
to reason on the impact of self-adaptation mechanisms on quality characteristics of the
simulated system.

Energy-conscious self-adaptation tactics form a subset of self-adaptation tactics that “mod-
ify runtime software configuration for the specific purpose of lowering energy consumption”
[PLL14]. They are aimed at reducing consumption over a period of time. Power-conscious
self-adaptation tactics perform reconfigurations to reduce the power draw of a software sys-
tem at a specific point time. Both energy- and power-conscious self-adaptation tactics rely
on consumption measurements or estimates when reasoning on the benefit of performing
an adaptation.
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Power models are used to estimate power consumption in absence of actual power measure-
ments [RRK08]. A power model describes power consumption of hardware and software
components, individual services or complete server nodes based on a set of system metrics.
The fundamental assumption of power models is that power consumption correlates with the
values of a set of system metrics, e.g. CPU utilization or I/O throughput. Examples include
linear regression models correlating CPU utilization [FWB07] or software performance
counters [ERKR06] with power consumption. Power models evaluate power consump-
tion at a stationary point. In order to determine energy consumption over a time-frame,
numerical integration algorithms can be applied.

3 Related Work

Seo et al. investigate the energy consumption of different architectural communication
styles [SEMM08]. The authors present a set of evaluation models for specific styles.
Among the analyzed communication styles are client-server and publish-subscribe. Their
approach focuses on energy consumption caused by communication and disregards all other
aspects of a software system. While their approach allows to compare energy efficiency of
employing specific communication styles against each other it can not be applied to reason
on power consumption of other architectural design decisions.

An approach for multi-objective architecture optimization for embedded systems is proposed
by Meedenyia et al. [MBAG10]. In their paper the authors focus on the tradeoff between
reliability and energy consumption. A model that evaluates the energy consumed by service
calls is applied to predict workload-dependent energy consumption. In order to account for
idle consumption the authors additionally include a static consumption offset. All services
offered by a component are assumed to cause the same energy consumption. This is an
acceptable abstraction for the embedded system domain where one component handles a
homogeneous task, e.g. controlling the brakes based on sensor signals. The parameter space
of these sensors are restricted by physical constraints such as the maximum speed of a car.
This is not the case for other other domains like enterprise software. Business components
offer an array of services with a large input parameter space. Depending on parameter
values, business components require largely varying resource demands. Assuming that all
services of a component consume the same amount of energy consequently would result in
imprecise consumption predictions.

The design of energy efficient self-adaptive software systems on an architectural level
has already been investigated by Götz et al. [GWCA12, GWR+13]. Main goal of the
proposed architectural design framework is to find optimal system configurations for single
users. This is achieved by adapting the runtime configuration of the system to the QoS
requirements of a single user. Multi-user scenarios are not considered by the approach.
Hence it cannot be applied to the design of self-adaptive systems that are used by multiple
users. Götz argues that QoS requirements could be checked against an architectural model
of the self-adaptive systems using simulation [G1̈3, p. 103f.]. The developer leaves the
development of a concept for this evaluation open to be addressed in future work.
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Brunnert et al. [BWK14] outline an approach for capturing application profiles that sub-
sume the core characteristics of a static software system. These profiles are used to make
QoS-driven deployment decisions for different software architectures. Runtime reconfig-
urations are not considered by the authors. Brunnert et al. enhance power consumption
characteristics as part of PCM’s Resource Environment specifications to enable design-time
power consumption analysis for software systems. Reasoning on power consumption is
limited to an average-case analysis of static software systems. It is thus not possible to
identify whether restrictions on peak power consumption are violated at specific points in
time. Consequently, sizing decisions for the power provisioning infrastructure are therefore
limited.

CloudSim by Calheiros et al. [CRB+11] is a simulator for Infrastructure-as-a-Service (IaaS)
data centers. It focuses on the operation and optimization of running virtual machines
(VMs) in a data center. All information is provided as Java source code extending the
CloudSim simulation environment. There is no model abstraction of system entities and
their relation. Unlike Palladio, CloudSim does not consider parametric dependencies
and has no explicit usage model. Rather it simulates VMs as isolated entities. Power
consumption predictions per node are carried out based on the CPU utilization aggregated
over all VMs that are deployed on the same node. VM load is modeled directly as an
utilization function over time. Reasoning on the power consumption of a software system
requires accurate utilization descriptions.

4 Modeling the Power Consumption Characteristics of Software Sys-
tems

In order to reason on the power consumption of a software system on architectural level its
consumption properties need to be captured as part of its architectural description. This
section outlines our extension of PCM with power consumption characteristics.

infrastructure

pcm::resourceenvironment

power distribution 
hierarchy

<<determines>>

binding

consumption 
characteristics

specification

power model<<determines>>

<<annotates>>

Figure 1: Relation between models used for specifying power consumption characteristics of a
software system

PCM’s Resource Environment models the hardware environment strictly by their perfor-
mance and reliability characteristics. Our model annotates the hardware components in the
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Resource Environment with their power consumption characteristics. Figure 1 depicts the
relation between the model extensions and PCM. Our model introduces a model abstraction
of the system’s power provisioning infrastructure (Power Infrastructure). Power Specifi-
cation describes models for evaluating the power consumption of hardware components
and the power provisioning infrastructure. The Power Binding model links both models
by binding each element in the infrastructure to the model used for evaluating its power
consumption.

This section is organized as follows. Section 4.1 discusses advantages and disadvantages of
different extension mechanisms that were considered for introducing power consumption
characteristics to PCM. Section 4.2 presents the power provisioning model. In section 4.3
an overview is given on the model for specifying power models. Section 4.4 outlines the
model used to specify consumption characteristics of hardware components.

4.1 Extending the Palladio Component Model

There are three approaches to extend PCM by another quality dimension. They are presented
in the following including their advantages and drawbacks.

First, PCM can be invasively modified to include additional quality characteristics. This
approach was taken for reliability [BKBR12] and is proposed by Brunnert et al. for power
consumption predictions [BWK14]. The main disadvantage of an invasive extension is that
it breaks support of existing tooling.

Second, PCM’s profile extension mechanism [KDH+12] or EMF’s child creation extenders
[Mer08] can be used to introduce new properties and elements to PCM. These approaches
are best taken when invasive changes to PCM are required that should not be propagated to
all PCM-based tooling.

Third, it is possible to introduce a new meta-model which annotates or references existing
PCM elements. As this alternative annotates existing model elements, it should only be
chosen when no backwards navigation is needed or indicated.

We chose the last option where a separate model represents power consumption character-
istics of the modeled software system. Model elements that have a counterpart in PCM’s
Resource Environment are annotated with their consumption characteristics. The reasons
for choosing this extension mechanism are as follows. Wile power consumption is an im-
portant quality characteristic, it is not essential to other characteristics such as performance.
Hence a non-invasive extension is indicated. Power consumption properties of hardware
have no direct implications on their performance. It consequently suffices to introduce
power consumption characteristics to PCM in an annotation model.

33



PowerInfrastructure
Repository

<<abstract>>
PowerConsumingEntitysuppliablePeakPower

:Measure<Power>

<<abstract>>
PowerProvidingEntity

PowerDistributionUnit

MountedPower
DistributionUnit

*0..1

ResourceContainer

ProcessingResource
Specification

*

0..1

1

infrastructure

PowerConsuming
Resource

pcm::resourceenvironment

1*

<<abstract>>
PowerConsuming
ProvidingEntity

*

0..1

Figure 2: Power Infrastructure meta-model

4.2 Power Provisioning Infrastructure

The power provisioning infrastructure of data centers is typically structured hierarchically
[FWB07]. It consists of a hierarchy of entities that provide and distribute power, e.g. PDUs,
and entities that consume power, such as the physical components of a node. Figure 2
depicts our proposed model for the power provisioning infrastructure.

PowerInfrastructureRepository hosts a set of power provisioning infrastructure model
descriptions. Typically only one infrastructure model is considered. However, the repository
enables an easier modeling of alternative power provisioning infrastructures.

PowerConsumingEntity subsumes all components in the system that consume power.

PowerConsumingResource represents a physical resource that consumes power. It annotates
a ProcessingResourceSpecification in a PCM instance with its consumption properties.
Every PowerConsumingResource is a PowerConsumingEntity. An example for PowerCon-
sumingEntity is the CPU of a compute node.

A PowerProvidingEntity distributes power to a set of PowerConsumingEntities nested
below them. suppliablePeakPower defines the peak power that all PowerConsumingEntities
connected to it can draw in total at any point in time.

Aside from entities that only provide or consume power there are also components that
take on both providing and consuming roles, e.g. PDUs. PowerConsumingProvidingEntity
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subsumes these entities.

PowerDistributionUnit extends PowerConsumingProvidingEntity. A PDU is connected to a
power source (PowerProvidingEntity) from which it draws power. The PDU then further
distributes power to connected PowerConsumingEntities.

MountedPowerDistributionUnit further specializes PowerDistributionUnit. It links the
PDU to a ResourceContainer in PCM’s Resource Environment. In essence, a mounted
PDU corresponds with a Power Supply Unit of a node or a rack-mounted PDU. The
relationship between a mounted PDU and its ResourceContainer is explicitly modeled so
that consumption properties of nodes and racks can individually be traced.

4.3 Power Model Specifications

<<interface>>
ConsumptionFactor

MeasuredFactor FixedFactor

<<abstract>>
PowerModelSpecification

*0..1

PowerModelRepository

*
0..1

DistributionPower
ModelSpecification

ResourcePower
ModelSpecification

NumericalBase
MetricDescription

metricType 1

*

specification

pcm::metricspec

Figure 3: Power Specification meta-model

The Power Specification model shown in Figure 3 enables an explicit specification of power
models and their input parameters. The calculation method is not specified in the Power
Specification model instance. Rather, a calculator is implemented for each instance as part
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of PCA as is explained further in Section 5.

The Power Specification Model is designed for unit support, e.g watt and ampere. Palladio’s
stochastical expression language StoEx [Koz08] was considered for specifying power
models but ruled out due to lacking support for metric units.

Idle:FixedFactor Busy:FixedFactor

ActiveResource
Utilization

:NumericalBaseMetric
Description

pcm::metricspecspecification

u:MeasuredFactor

BasicSpecRepo
:ResourcePower

ModelSpecification

LinearPowerModel
:ResourcePower

ModelSpecification

Figure 4: Linear power model represented as an instance of the PowerModelSpecification

A PowerModelRepository contains a set of PowerModelSpecifications. PowerModelSpec-
ification represents a certain type of power consumption model (c.f. Figure 3). In the
following, we will explain the concepts of the model based on the exemplary LinearPower-
Model instance displayed in Figure 4. The depicted LinearPowerModel represents a simple
linear regression-based power model for compute nodes as proposed by Fan et al [FWB07].
Fan et al. identify a close-to-linear relation between power consumption of a whole node
and its CPU utilization . The linear power model predicts the power consumption P (u)
under utilization u by interpolating between the node’s power consumption in an Idle and
Busy state: P (u) = PIdle + (PBusy − PIdle) · u.

A ConsumptionFactor specifies an input parameter of a power model. In the example, Idle,
Busy and u are consumption factors. ConsumptionFactors are further distinguished into
Fixed and Measured Factors.

Fixed Factors are independent from measurements and describe static power consumption
characteristics of a system. For the linear power consumption model the fixed factors are
made up of the CPU’s power consumption under Idle (PIdle) and Busy (PBusy) load.

As their name implies, Measured Factors are extracted from the simulated system through
measurements. A Measured Factor’s metric is specified in direct reference to Palladio’s
Metric Specification Framework [Leh14]. For the linear power model the measured CPU
utilization u is included as a Measured Factor.

Similar to Palladio’s Resource Repository, instances of the Power Specification model are
intended for reuse. Linear and other power models allow to predict the power consumption
of a wide range of systems. Hence they are defined separately from the Power Infrastructure
model.

This section discussed the specification of power models as a set of input parameters.
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Consumption parameters alone do not suffice in evaluating the power consumption. It is
necessary to define how the predictions are calculated from these parameters. We opted for
a code-based realization of the calculation methods of power models. Section 5 provides
details on the calculation.

4.4 Specifying Consumption Characteristics of the Infrastructure

Power consumption characteristics of the infrastructure are not directly specified in the
infrastructure model. They are maintained in the separate Binding model and referenced
from the Infrastructure model. The main rationale behind separating these two models lies
in increased reuse and ease of variation compared to a direct specification of consumption
characteristics in the infrastructure model. E.g., power consumption characteristics of an
IBM System X3350M3 server can be described in terms of its consumption in idle (230 W)
and busy states (410 W) as is done by Brunnert et al. [BWK14].
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Figure 5: Power Binding meta-model

Figure 5 depicts our proposed binding model. It specifies the relation between the entities
in the provisioning infrastructure and power models. Both Resource and Distribution-
PowerBinding specialize PowerBinding.

A PowerBinding comes with a set of FixedFactorValues. Every FixedFactorValue deter-
mines the value of a FixedFactor. In case a server’s power consumption can be described by
a linear power model, the FixedFactorValues of the respective PowerBinding would specify
the consumption of the node in a busy and idle state in Watt.

A ResourcePowerBinding defines the consumption characteristics of a type of PowerCon-
sumingResource. Continuing with the previous example, all X3350M3 nodes in a system
can reference the same binding. Should a CPU-based linear power consumption model not
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sufficiently capture consumption characteristics of a node, e.g. because it is exclusively
used as a file server, the PowerConsumingResource can reference a more suitable binding.

Every PowerProvidingEntity references a DistributionPowerBinding, which defines with
what values the input parameters of a DistributionPowerModelSpecification are instantiated.
As for ResourcePowerBinding, a DistributionPowerBinding can be reused across multiple
PowerProvidingEntities.

5 Power Consumption Analyzer

The Power Consumption Analyzer (PCA) evaluates the power consumption of a software
system. The analysis requires the specification of the system as a PCM instance and
corresponding consumption annotations in the shape of a Power Consumption model (c.f.
Section 4) instance. As part of a needs analysis for architecture-level power consumption,
we identified two use cases covering static and self-adaptive software systems. PCA support
both use cases, which are as follows: The Power Consumption Analyzer (PCA) evaluates
the power consumption of a software system. The analysis requires the specification of
the system as a PCM instance and corresponding consumption annotations in the shape
of a Power Consumption model (c.f. Section 4) instance. As part of a needs analysis
for architecture-level power consumption, we identified two use cases covering static and
self-adaptive software systems. PCA support both use cases, which are as follows:

In the first use case, a software architect wants to predict power consumption of the sys-
tem in a specific usage context. The software architect intends to compare the impact
of design decisions on the systems’ power consumption. In this case, the structure and
consumption characteristics of hardware components have no impact on the system per-
formance. Consequently, power consumption is analyzed as part of a post-simulation
step. The advantage of analyzing power consumption separate from the simulation is that
different power provisioning infrastructures can be compared without requiring additional
time-intensive simulation runs. A new simulation is only necessary when both performance
and power consumption characteristics have changed, e.g. because new servers are added
to the resource environment.

In the second case, the software architect is interested in evaluating the impact a power-
conscious self-adaptation tactic has on multiple quality characteristics. Power-conscious
self-adaptation tactics use power consumption measurements to reason on the power
efficiency of the system and issue system reconfigurations. The mutual dependency between
current system architecture and power consumption requires an intra-simulation analysis.

The implementation of PCA is designed for both intra- as well as post-simulation power
consumption analysis. Figure 6 sketches the integration of the PCA with the Quality
Analysis Lab developed by Lehrig [Leh14] that is part of the upcoming Palladio release 3.5.
The PCA evaluates the power consumption for a given EvaluationContext. This context
consists of an instance of our Power Consumption model, the PCM instance it annotates,
and a set of relevant measurements taken from the simulated system-under-analysis.

PCA computes the power consumption of individual PowerConsumingResources using
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Figure 6: Integration of the Power Consumption Analyzer with Palladio’s Quality Analysis Lab
(QuAL) [Leh14]

calculators. A calculator programmatically evaluates power consumption of infrastructure
elements. For example, the LinearPowerModelCalculator for the linear power model
depicted in Figure 6 determines the power consumption of the node based on its current
utilization by evaluating the factors of P (u) = PIdle+(PBusy−PIdle)·u. Every calculator
offers a calculate method that takes exactly one measurement for every metricType
of a MeasuredFactor specified in the corresponding PowerModelSpecification instance.
FixedFactors do not change and are thus passed as part of the calculator’s constructor
parameters.

After determining power consumption of all nested PowerConsumingEntities the analyzer
aggregates the power consumption of a PowerProvidingEntity. We apply the power model
concept to individual elements in the power provisioning infrastructure. This design
enables modeling of arbitrary conversion losses [PKA07] for each individual element in the
provisioning infrastructure hierarchy.

The following sections briefly sketch how the PCA is used as part of post- and intra-
simulation power consumption analysis to support software architects in designing power-
efficient software systems.

5.1 Post-Simulation Power Consumption Analysis

Post-simulation power consumption analysis allows software architects to analyze the power
consumption of a software system after a previous simulation run. It is possible to analyze
the power consumption of any element in the power provisioning infrastructure at any
given point in time. Consumption characteristics of the power provisioning infrastructure

39



can be changed without requiring repeated simulation. Post-simulation analysis leverages
measurements that were extracted from the simulation for a set of system metrics, e.g.
resource utilization for the linear power model presented in Section 4.3. Multiple power
provisioning systems can be compared on the basis of the same simulation run as changes
in the power consumption characteristics do not induce changes in the simulation logic.
Software architects can configure the analysis, e.g. by setting the size of the interval for
utilization-based metrics.

PCA calculates power consumption measurements of a PowerProvidingEntity by aggregat-
ing the power consumption of all connected elements. In case of post-simulation analysis
the measurements are taken from the Recorder Framework (c.f. Figure 6), which stores all
measurements of a simulation run. Power consumption is always calculated at a discrete
point in time. Yet, measured data from the experiment does not necessarily contain mea-
surements for said specific point in time. This is resolved by passing a derived calculated
value from the post-simulation context to the analyzer.

5.2 Intra-Simulation Power Consumption Analysis

Power-conscious self-adaptation tactics as proposed in [JHJ+10, DSG+12, VAN08,
RRT+08] adapt the system based on power consumption measurements. While each
of the tactics has been evaluated for a set of specific software systems it is difficult to
estimate how they would impact quality characteristics of other systems. Estimating the
effect of using multiple energy-conscious self-adaptation tactics concurrently is even more
difficult. Furthermore, power-conscious and other self-adaptation tactics can influence
each other depending on specific thresholds for activation. By making power consumption
measurements available at intra-simulation time software architects are enabled to evaluate
combinations of all tactics and reason on QoS implications on an architectural level.

Intra-simulation power consumption analysis uses the same technical infrastructure as post-
simulation power consumption analysis. The PCA derives power consumption metrics from
measurements collected during the simulation by aggregating the power consumption of
individual elements in the Power Infrastructure model instance. The only difference is that
the PCA processes constantly updated measurements from a running simulation instead of
pre-recorded measurements. Calculators provide power consumption estimates of hardware
components to power consumption probes, which in turn provide power consumption
measurements as a basis for decisions of power-conscious self-adaptation tactics.

We are currently implementing the presented concepts as an extension of SimuLizar.

6 Conclusion and Outlook

This paper presented a model-driven approach for analyzing the power consumption of
static and self-adaptive software systems. By accounting for different power models and
temporary peaks our analysis improves the precision of power consumption estimations on

40



an architectural level when compared to previous work [BWK14, MBAG10].

Our proposed Power Consumption model captures the consumption characteristics of
a software system and its power provisioning infrastructure. It is designed to support
design-time reasoning on the power consumption of power-conscious software systems. We
presented how the three major aspects provisioning infrastructure (Power Infrastructure),
consumption characteristics of hardware components (Power Binding) and the power mod-
els used to evaluate consumption characteristics of the components (Power Specification)
can be abstracted. We showed the advantages of integrating them using a loose coupling
concept. It allows software architects to separately define and extend a software system’s
power provisioning infrastructure and the power models used to predict the consumption of
different types of hardware components.

The paper outlines a methodology and implementation for post- and intra-simulation
power consumption analysis of software systems. Post-simulation analysis allows software
architects to evaluate the power consumption of a software system. Thereby, multiple design
alternatives can be compared against each other for their effect on power consumption. Not
only is it possible to track peaks in power consumption for individual nodes but also for all
other elements in the power provisioning infrastructure, e.g. PDUs. As a significant portion
of large-scale software systems’ TCO is determined by their power efficiency, this ultimately
allows software architects to more accurately reason on the TCO. No repeated simulations
are required when power consumption properties of the system-under-analysis are changed.
Our approach further supports software architects in selecting a set of energy-conscious self-
adaptation tactics that are best suited to meet QoS goals in multiple quality dimensions. We
showed the integration of intra-simulation power consumption analysis with the SimuLizar
approach and how our extension supports reasoning on energy-conscious self-adaptation
tactics.

In future work we will increase the precision of power consumption predictions and enable
architecture-level cost projections based on power consumption.

The Power Infrastructure model includes power sources as explicit entities. As of now,
constant restrictions on the peak power provided by these PowerProvidingEntities are
captured. We plan to introduce temporal constraints on power consumption that are driven
by electricity price and availability. We expect a significant improvement of operational
cost projections for software systems that are operated in dynamic environments.

Power efficiency of software systems can be controlled through hardware and middleware
techniques such as ACPI [Hew13]. ACPI allows to control power efficiency by transitioning
resources between states with different power consumption and performance properties.
Palladio currently does not distinguish operational states of hardware. By introducing the
modeling of operational states to Palladio’s hardware resources, the evaluation of techniques
such as power capping [RRT+08] will be supported. We expect this to improve accuracy of
both power consumption and performance predictions.

We plan to account for reconfigurations to the execution environment of software systems,
e.g. turning nodes off and on. This allows focusing on the optimization for whole data
centres instead of a set of applications. Their inclusion should contribute further in achieving
more precise power consumption predictions for self-adaptive software systems.
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Further ideas for future work include an explicit modeling of the power consumption caused
by network equipment, as well as cooling and ventilation. Our approach currently does not
explicitly account for cooling and ventilation, as both are strongly correlated with power
consumption of the computing infrastructure [FWB07]. When modeling a system’s total
power consumption we thus follow Fan et al.’s proposition to include them into our power
models “as a fixed tax over the critical power” [FWB07]. However, the approach presented
in this paper allows to include detailed power models for cooling by including them as
PowerConsumingEntities. Dependencies between the heat generated by the compute
hardware and their power consumption can be represented as MeasuredFactors to consider
load variations in a data center. We currently account for network power consumption
as a fixed factor since it is reported to be mostly static [FWB07, NPI+08]. Our model
can be extended to include network power consumption in a similar way as for cooling
and ventilation. The necessary steps comprise the introduction of network equipment as a
specialized PowerConsumingEntity and the specification of their consumption properties in
the Power Binding and Power Specification model.
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Merkle, and Andreas Rentschler. Extending the Palladio Component Model using
Profiles and Stereotypes. In Steffen Becker, Jens Happe, Anne Koziolek, and Ralf
Reussner, editors, Palladio Days 2012 Proceedings (appeared as technical report),
Karlsruhe Reports in Informatics ; 2012,21, pages 7–15, Karlsruhe, 2012. KIT, Faculty
of Informatics.

[Koz08] Heiko Koziolek. Parameter dependencies for reusable performance specifications of
software components. PhD thesis, Carl von Ossietzky University of Oldenburg, 2008.

[KR08] Heiko Koziolek and Ralf Reussner. A Model Transformation from the Palladio Compo-
nent Model to Layered Queueing Networks. In Proceedings of the SPEC International
Workshop on Performance Evaluation: Metrics, Models and Benchmarks, SIPEW ’08,
pages 58–78, Berlin, Heidelberg, 2008. Springer-Verlag.

[Leh14] Sebastian Lehrig. Quality Analysis Lab (QuAL): Software Design Description and
Developer Guide Version 0.2. Technical report, Universität Paderborn, Faculty of
Electrical Engineering - Computer Science - Mathematics, April 2014.

[MBAG10] Indika Meedeniya, Barbora Buhnova, Aldeida Aleti, and Lars Grunske. Architecture-
Driven Reliability and Energy Optimization for Complex Embedded Systems. In
George T. Heineman, Jan Kofron, and Frantisek Plasil, editors, Research into Practice -
Reality and Gaps, volume 6093 of Lecture Notes in Computer Science, pages 52–67.
Springer Berlin Heidelberg, 2010.

[Mer08] Ed Merks. Creating Children You Didn’t Know Existed. http://ed-merks.
blogspot.de/2008/01/creating-children-you-didnt-know.
html, January 2008. Online; accessed 31/10/2014.

[MH11] Philipp Merkle and Jörg Henss. EventSim – An Event-driven Palladio Software
Architecture Simulator. In Steffen Becker, Jens Happe, and Ralf Reussner, editors,
Palladio Days 2011 Proceedings (appeared as technical report), Karlsruhe Reports in
Informatics ; 2011,32, pages 15–22, Karlsruhe, 2011. KIT, Fakultät für Informatik.

[NPI+08] Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Ratnasamy, and David
Wetherall. Reducing Network Energy Consumption via Sleeping and Rate-adaptation.
In Proceedings of the 5th USENIX Symposium on Networked Systems Design and
Implementation, NSDI’08, pages 323–336, Berkeley, CA, USA, 2008. USENIX Asso-
ciation.

[PKA07] A. Pratt, P. Kumar, and T.V. Aldridge. Evaluation of 400V DC distribution in telco and
data centers to improve energy efficiency. In Telecommunications Energy Conference,
2007. INTELEC 2007. 29th International, pages 32–39, Sept 2007.

[PLL14] Giuseppe Procaccianti, Patricia Lago, and Grace A. Lewis. Green Architectural Tactics
for the Cloud. In Software Architecture (WICSA), 2014 IEEE/IFIP Conference on,
pages 41–44, April 2014.

[RRK08] Suzanne Rivoire, Parthasarathy Ranganathan, and Christos Kozyrakis. A Comparison
of High-level Full-system Power Models. In Proceedings of the 2008 Conference on
Power Aware Computing and Systems, HotPower’08, pages 3–3, Berkeley, CA, USA,
2008. USENIX Association.

[RRT+08] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang, and
Xiaoyun Zhu. No ”Power” Struggles: Coordinated Multi-level Power Management for
the Data Center. SIGARCH Comput. Archit. News, 36(1):48–59, March 2008.

44



[SEMM08] Chiyoung Seo, G. Edwards, S. Malek, and N. Medvidovic. A Framework for Estimat-
ing the Impact of a Distributed Software System’s Architectural Style on its Energy
Consumption. In Seventh Working IEEE/IFIP Conference on Software Architecture,
WICSA 2008, pages 277–280, February 2008.

[VAN08] Akshat Verma, Puneet Ahuja, and Anindya Neogi. pMapper: Power and Migration Cost
Aware Application Placement in Virtualized Systems. In Valrie Issarny and Richard
Schantz, editors, Middleware 2008, volume 5346 of Lecture Notes in Computer Science,
pages 243–264. Springer Berlin Heidelberg, 2008.

[ZWW12] Yanwei Zhang, Yefu Wang, and Xiaorui Wang. Electricity Bill Capping for Cloud-
Scale Data Centers that Impact the Power Markets. In Parallel Processing (ICPP),
2012 41st International Conference on, pages 440–449, Sept 2012.

45


