Towards Performance Awareness in Java EE
Development Environments

Alexandru Danciu', Andreas Brunnert!, Helmut Krcmar?
Ifortiss GmbH
Guerickestr. 25, 80805 Miinchen, Germany
{danciu, brunnert} @fortiss.org
2Technische Universitidt Miinchen
Boltzmannstr. 3, 85748 Garching, Germany
krcmar @in.tum.de

Abstract: This paper presents an approach to introduce performance awareness in
integrated development environments (IDE) for Java Enterprise Edition (EE) applica-
tions. The approach predicts the response time of EE component operations during
implementation time and presents these predictions within an IDE. Source code is
parsed and represented as an abstract syntax tree (AST). This structure is converted
into a Palladio Component Model (PCM). Calls to other Java EE component opera-
tions are represented as external service calls in the model. These calls are param-
eterized with monitoring data acquired by Kieker from Java EE servers. Immediate
predictions derived using analytical techniques are provided each time changes to the
code are saved. The prediction results are always visible within the source code editor,
to guide developers during the component development process. In addition to this
immediate feedback mechanism, developers can explicitly trigger a more extensive
response time prediction for the whole component using simulation. The paper covers
the conceptional approach, the current state of the implementation and sketches for the
user interface.

1 Introduction

Detecting performance problems of applications systems is essential before their release to
the field. However, evaluating the performance of application systems in terms of response
time, resource utilization and throughput is a difficult task. Performance tests require re-
alistic environments comprising hardware, middleware, utilized components, test data and
a test workload. Load testing is often one of the last steps performed during a develop-
ment process, even though performance problems can be solved easier, the earlier they are
detected.

Performance awareness represents the ability to detect performance problems and to re-
act to them [T14]. One of the core targets of this concept is supporting developers with
insights on the performance of code they are currently developing. This paper presents
an approach to introduce performance awareness in integrated development environments
(IDE) for Java Enterprise Edition (EE) applications. Java EE supports the implementa-

Proc. SOSP 2014, Nov. 26-28, 2014, Stuttgart, Germany
Copyright (©) 2014 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

152



tion of component-based software systems. The Java EE specification defines application
component types such as applets, servlets and Enterprise JavaBeans [LD13]. The emphasis
of component-based development is on the specification of loosely coupled independent
components to enable separation of concerns and reuse across the system. Component
developers reuse other components to implement the required functionality. The perfor-
mance of a new component depends among others on the performance of reused compo-
nents [Koz10]. Therefore component developers are facing questions such as:

e Are the service-level agreements (SLA) imposed to my component violated by
reusing a specific component?

e Can the SLAs imposed to my component be achieved with the current component
implementation?

e Does a particular change in the control flow of my component lead to an SLA vio-
lation?

e How is the performance of my component changing for varying workloads?

Answering these questions is an increasingly difficult task, due to three main factors: ap-
plication system architecture, system life cycle and IT governance [BVD™14]. Complex
architectures often lead to geographical, organizational, cultural and technical variety. De-
velopers lack the knowledge about the structure and the deployment of reused components.
Components are subject to a constant iteration between development and operation. It is
difficult for developers to maintain an overview of the performance behavior of compo-
nents. Additionally, components are assigned to different organizational units. Accessing
monitoring data is thus more difficult for the developer. From a technical point of view,
the developer needs experience in the performance engineering domain and in using cor-
responding tools. This article proposes an automated and integrated approach to answer
these questions. The approach predicts the response time of component operations during
implementation time and presents the results within the IDE of the developer.

The remainder of this paper is organized as follows. Section 2 provides an overview of
the approach and describes the three main phases in detail. Section 3 describes existing
research related to this approach. Section 4 concludes this article and describes future
research directions.

2 Developer Performance Awareness Approach

The goal of the approach presented in this paper is to support developers with response
time estimations for Java EE component operations. The main phases and the architecture
of the proposed approach are shown in Figure 1. First, performance data of running Java
EE components is collected from existing application deployments (1). Our approach is
based on the assumption that new components will reuse existing ones to some extent.
The collected data is then aggregated over different component instances, versions and
user workloads (2). Response time estimations for new components are derived by us-
ing Palladio Component Models (PCM). These PCM models are generated based on the
source code of the component operations representing the control flow with an emphasis

153



Data 2 Data 3 Model Developer
collection aggregation generation feedback

Java EE Server Eclipse IDE
Kieker & Monitoring Model*:"_. Code®
Monitoring records Generator Editor

Figure 1: Overview of the approach (structure adapted from [BVK13])

on external calls (3). Two types of estimations can be triggered (4): an immediate estima-
tion after the developer saves a change to the code and an explicitly triggered simulation.
The immediate estimation is performed using an analytical solver and stochastic expres-
sions representing the performance behavior of reused components. The prediction results
are visible within the source code editor. Simulations are intended to provide more precise
predictions and are performed using performance curves [WHW12]. Simulation results
will be displayed in a separate view. The data collection and aggregation phases are exe-
cuted periodically. The model generation and developer feedback phases are triggered by
the developer. Each phase is described in detail below.

2.1 Data Collection

The response time behavior of running components within the application landscape is col-
lected using the Kieker framework [Prol4]. Applications are instrumented using aspect-
oriented programming. Using the adaptive monitoring feature [Pro14], data collection is
activated for specific component operations. Monitoring records are passed by a new mon-
itoring writer via a web-service call to a database application that serves as a backend for
the approach presented in this work. This database application serves as a central reposi-
tory for monitoring records. The web-service deserializes the record and stores it to a rela-
tional database. Monitoring records include response times of component operations and
the current workload of the application in terms of queue length and resource utilization.
The monitoring writer stores for each record an additional description of the deployment
from which the measurement was obtained. This description includes information about
the host and the application server instance. Information about the deployment is retrieved
by the monitoring writer from local configuration files. The monitoring writer also stores
meta-data of the application binaries provided by a central build tool so that performance
measurements can be related to component versions.

154



2.2 Data Aggregation

The response time behavior of component operations can be collected from multiple ap-
plication servers and for different workloads. Also, different versions of a component can
be deployed within the application landscape. The aim of this step is to aggregate indi-
vidual records to performance curves and stochastic expressions describing the response
time behavior of operations in dependence on a set of input parameters such as workload
characteristics. Aggregation is performed using statistical methods and measurements are
aggregated for each component version separately. Java functionality is delivered as de-
ployable units by assembling source code to Java Archives, Web Archives or Enterprise
Archives. The current version of the code, identified by a revision number, is exported
from a repository and assembled. The resulting archive is then deployed to an application
server. However, neither the revision, the assembly nor the deployment suggest which
component version is addressed by a performance measurement. The source code of a
component might remain constant over multiple revisions, assemblies and deployments.
The proposed approach stores for each component the revision numbers which contained
changes to its source code. This revision number is then compared to the revision con-
tained in the deployable unit. A central build tool stores the revision number of the assem-
bled code in a property file within the deployable unit. Measurements can thus be assigned
to specific component versions. The results of this step are provided over a web-service
interface to clients (i.e., IDEs).

2.3 Model Generation

The source code of a new component and the performance data collected for any reused
components are used to generate a component-based performance model. PCM is used as
the meta-model for the generated models.

The main factors influencing the performance of reusable software components are the
component implementation, required services, deployment platform, usage profile and re-
source contention [Koz10]. The focus of this approach are the component implementation
and the required services. The component implementation is represented in terms of the
control flow of individual component operations. Required services are modeled explic-
itly in the model as external calls. The deployment platform is assumed to be constant for
all components. The usage profile is represented in terms of the response times of reused
components in dependence on the workload. The impact of input parameters and resource
contention are not addressed by the approach.

The proposed approach first generates a PCM repository model which specifies the cur-
rently investigated component. The model generation is based on the approaches of Kap-
pler et al. [KKKRO8] and Becker et al. [BHT*10]. Source code of component operations
is parsed and represented as an abstract syntax tree (AST). Each AST is then converted
to a Resource Demanding Service Effect Specifications (RDSEFF). An RDSEFF specifies
the behavior of a single component operation. Calls to reused components are modeled as

155



external call actions. The response time behavior of external calls is modeled either using
stochastic expressions or performance curves depending on whether the model is used as
input for an analytical solver (stochastic expression) or a simulation engine (performance
curve). This information is retrieved from the monitoring record database. Calls within the
boundaries of the investigated component are modeled as internal action calls. Branches,
loops and forks are also represented in the RDSEFF. Since the modeled component is un-
der development, the probabilities of different execution flows are unknown. Therefore,
branches are modeled having equal probabilities. Since binary code is not available for the
investigated component, a dynamic analysis [KKKRO8] of the component behavior can
not be performed. Thus, resource demands of internal call actions are also not represented
in the RDSEFFE.

After creating the PCM repository model, the remaining PCM models that are required
for a simulation, are also generated automatically. The PCM system model describes how
components are combined and which interfaces they provide. The investigated component
is represented as a single instance in the PCM system model. Each public component
operation is modeled as an externally accessible interface. The PCM usage model de-
scribes a closed workload where all operations of the investigated component are called
equally often. The hardware resources such as central processing units (CPU) available
to the investigated component are specified within the PCM resource environment model.
A resource environment model containing one server and a single CPU is generated. The
investigated component is then mapped to this server within the PCM allocation model.

2.4 Developer Feedback

The main goal of the proposed approach is to integrate estimations of the expected re-
sponse time of component operations in the development environment. Two types of feed-
back are envisioned:

1. An implicit estimation of the response time of component operations is automati-
cally performed each time changes to the code are saved.

2. A detailed response time estimation of all component operations triggered by the
developer.

Since changes to code are frequently saved, the immediate estimation must be executed
very fast. The estimation is therefore performed using an analytical solver. Figure 2(a)
shows how this type of feedback could look in the IDE. If the estimated response time ex-
ceeds a specific threshold, a notification will be displayed within the code editor. Thresh-
olds are configured with default values and can be adjusted by the developer. Notifications
are displayed as yellow and red traffic lights and are associated to the corresponding oper-
ation signatures.

The explicitly triggered response time estimation aims at providing more precise results.
Therefore a simulator is used to process the PCM model. The response time behavior of
reused components is modeled using performance curves. Figure 2(b) shows how this type
of feedback could look in the IDE. Results are displayed as probability density function in

156



Simulation Results X

Component.java x
@ public void operation_1(){

)

Mean: X ms

Median: Y ms

Probability (%)

@ public void operation_2()}{

,

Time (ms)

(a) Immediate feedback mockup (b) Simulation results mockup

Figure 2: User interface mockups

a separate view. Important metrics such as mean and median values are also displayed.

3 Related Work

The presented approach is related to existing research on developer performance aware-
ness and performance model generation. In the following, we discuss existing work that
addresses these research areas.

Developer Feedback

Several approaches aim at providing feedback to developers. Weiss et al. [WWHM13]
propose an approach for evaluating the performance of software artifacts based on tai-
lored benchmarks applications during the implementation phase. The authors describe a
scenario, how immediate feedback could be provided to developers in the IDE. Develop-
ers can either track the performance impact of changes to the implementation or compare
different design alternatives. Performance estimations are displayed as numerical values
and bar charts and in a separate view. The presented approach is applicable only to Java
Persistence API services. Instructions on how to design benchmark applications and how
to apply the approach to other components are provided.

Heger et al. [HHF13] present an approach to integrate performance regression root cause
analysis into development environments. The change in performance between two revi-
sions is displayed graphically as a function. Methods causing the regression are presented
to the developer as a graph. The approach employs unit tests to gather performance mea-
surements and thus provides no feedback on the performance expected in realistic envi-
ronments.

Bures et al. [BHK™14] propose the integration of performance awareness in the devel-
opment life cycle of autonomic component ensembles. The authors describe how the
design and operations phases can be augmented with performance-related activities such
as formulating performance goals or collecting performance data. One of these activities
aims at providing feedback to developers. The authors envision the presentation of perfor-
mance measurements to the developer directly in the IDE. Feedback is provided graphi-
cally within a pop-up window. The approach is suitable for the presentation of historical

157



data and doesn’t support a real-time interaction with the developer.
Automatic Performance Model Generation

Brosig et al. [BHK11] present a semi-automatic approach for extracting PCM models from
Java EE applications based on monitoring data collected at run-time using WebLogic-
specific monitoring tools. Call path tracing is employed to determine the control flow.
Only executed paths are identified by the approach. Brunnert et al. [BVK13] present a
similar approach that is applicable for all Java EE server products based on data collected
from custom Servlet filters and EJB interceptors. Neither of the approaches support eval-
uating the performance of single components during the implementation phase.

Becker et al. [BHTT10] present an approach for reverse engineering Java applications
based on static source code analysis. Similar to the approach proposed by Kappler et al.
[KKKROS], source code is parsed to an AST which is then converted to an RDSEFFs.
Krogmann et al. [KKR10] use static and dynamic analysis to reverse engineer Java ap-
plications. This approach requires the evaluated components to be executed in testbeds.
Parametric dependencies between input parameters and the control flow are derived using
genetic search.

4 Conclusion and Future Work

This paper proposed an approach to provide feedback on the estimated response time of
Java EE components to developers within the IDE. Using the approach does not require
any knowledge about reused components or experience in the performance engineering
domain. Developers are not required to make efforts for obtaining access to performance
data and do not have to employ additional tools for processing these data. Feedback is
provided automatically to the developer and requires no additional effort. The approach
focuses on the performance impact of component reuse and ignores the resource demand
of the investigated component. Therefore, the application of this approach is only useful
if component reuse exists. The prediction of response times in dependence on the work-
load is only possible if the behavior of reused components was measured under various
workloads.

Future research will evaluate this approach within a case study. Additionally, the approach
needs to enable the developer to refine generated PCM models, for example by specifying
probabilities for branches within an RDSEFF. Refinements could be performed by anno-
tating code.

References

[BHK11] F. Brosig, N. Huber, and S. Kounev. Automated extraction of architecture-level per-
formance models of distributed component-based systems. In Proceedings of the
26th IEEE/ACM International Conference on Automated Software Engineering, pages
183-192, Nov 2011.

158



[BHK " 14]

[BHT™10]

[BVD*14]

[BVK13]

[HHF13]

[KKKROS]

[KKR10]

[Koz10]

[LD13]

[Prol4]
[Ti4]

[WHW12]

[WWHM13]

Tom4s Bures, Vojtéch Horky, Michat Kit, Luk4s Marek, and Petr Tima. Towards
Performance-Aware Engineering of Autonomic Component Ensembles. In Tiziana
Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation, Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2014.

Steffen Becker, Michael Hauck, Mircea Trifu, Klaus Krogmann, and Jan Kofron. Re-
verse Engineering Component Models for Quality Predictions. In Proceedings of the
14th European Conference on Software Maintenance and Reengineering, European
Projects Track, pages 199-202. IEEE, 2010.

Andreas Brunnert, Christian Vogele, Alexandru Danciu, Matthias Pfaff, Manuel
Mayer, and Helmut Krcmar. Performance Management Work. Business & Infor-
mation Systems Engineering, 6(3):177-179, 2014.

Andreas Brunnert, Christian Vogele, and Helmut Krcmar. Automatic Performance
Model Generation for Java Enterprise Edition (EE) Applications. In MariaSimon-
etta Balsamo, WilliamJ. Knottenbelt, and Andrea Marin, editors, Computer Perfor-
mance Engineering, volume 8168 of Lecture Notes in Computer Science, pages 74—
88. Springer Berlin Heidelberg, 2013.

Christoph Heger, Jens Happe, and Roozbeh Farahbod. Automated Root Cause Isola-
tion of Performance Regressions During Software Development. In Proceedings of
the 4th ACM/SPEC International Conference on Performance Engineering, ICPE *13,
pages 27-38, New York, NY, USA, 2013. ACM.

Thomas Kappler, Heiko Koziolek, Klaus Krogmann, and Ralf H. Reussner. Towards
Automatic Construction of Reusable Prediction Models for Component-Based Perfor-
mance Engineering. In Software Engineering 2008, volume 121 of Lecture Notes in
Informatics, pages 140—154, Munich, Germany, February 18-22 2008. Bonner Kollen
Verlag.

K. Krogmann, M. Kuperberg, and R. Reussner. Using Genetic Search for Reverse
Engineering of Parametric Behavior Models for Performance Prediction. /IEEE Trans-
actions on Software Engineering, 36(6):865-877, Nov 2010.

Heiko Koziolek. Performance evaluation of component-based software systems: A
survey. Performance Evaluation, 67(8):634 — 658, 2010. Special Issue on Software
and Performance.

Bill Shannon Linda DeMichiel. Java Platform, Enterprise Edition (Java EE) Specifi-
cation, v7. 2013.

Kieker Project. Kieker User Guide. Research report, April 2014.

Petr Tima. Performance Awareness: Keynote Abstract. In Proceedings of the 5th
ACM/SPEC International Conference on Performance Engineering, ICPE *14, pages
135-136, New York, NY, USA, 2014. ACM.

Alexander Wert, Jens Happe, and Dennis Westermann. Integrating Software Per-
formance Curves with the Palladio Component Model. In Proceedings of the 3rd
ACM/SPEC International Conference on Performance Engineering, ICPE *12, pages
283-286, New York, NY, USA, 2012. ACM.

Christian Weiss, Dennis Westermann, Christoph Heger, and Martin Moser. Systematic
Performance Evaluation Based on Tailored Benchmark Applications. In Proceedings
of the 4th ACM/SPEC International Conference on Performance Engineering, ICPE
’13, pages 411-420, New York, NY, USA, 2013. ACM.

159



