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Abstract: The Pipes-and-Filters design pattern is a well-known pattern to organize
and execute components with sequential dependencies. The pattern is therefore often
used to perform several tasks consecutively on large data streams, e.g., during image
processing or dynamic analyses. In contrast to the pattern’s familiarity and application,
almost each common programming language lacks of flexible, feature-rich, fast, and
concurrency-aware Pipes-and-Filters frameworks. So far, it is common practice that
most developers write their own implementation tailored to their specific use cases and
demands hampering any effective re-use.

In this paper, we discuss Pipes-and-Filters architectures of several Java-based ap-
plications and point out their drawbacks concerning their applicability and efficiency.
Moreover, we propose a generic and concurrency-aware Pipes-and-Filters framework
and provide a reference implementation for Java called TeeTime.

1 Introduction

Pipes-and-Filters is a common architectural pattern in several projects and applications,
often used to process large data streams. Figure 1 shows an example Pipes-and-Filters-
oriented processing to visualize program traces, which are reconstructed from serialized
method events. Each filter component, also called stage, fetches incoming elements from
its input ports, processes them, and finally sends the resulting elements via its output ports.

During the development of Kieker [RVHM ™08, vHRH'09, vHWH12], an application per-
formance monitoring and architecture discovery framework, we encounter various archi-

Figure 1: An example Pipes-and-Filters-oriented processing pipeline to visualize program traces
reconstructed from serialized method events. Ports serve as interface to connect two stages with

each other.
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tecture and performance issues with Kieker’s Pipes-and-Filters-oriented analysis compo-
nent. Feedback from users confirm these issues. Although suitable for most post-mortem
analyses, the framework is not capable of processing the amount of data required for more
complex analyses, such as live architecture reconstruction and performance anomaly de-
tection. The underlying analysis implementation does not take advantage of multi proces-
sor systems and relies extensively on slow reflection calls and string comparison. More-
over, Kieker’s analysis component does not support the composition of multiple stages.

There are only very few Pipes-and-Filters frameworks that are not tailored to a particular
use case, but designed for arbitrary pipeline architectures. To the best of our knowledge,
none of them are easy to use, extensible, efficient, and address both the usage and the
abstraction of multi-core architectures in one single framework.

Hence, we decided to develop a generic and concurrency-aware Pipes-and-Filters frame-
work using our experience and our requirements from Kieker. This includes a fast refer-
ence implementation called TeeTime, ports for stages, and a convenient application pro-
gramming interface which abstracts from the management of concurrency.

Our framework is not limited to Kieker and thus can be used in other projects as well.
Furthermore, it can be applied to various programming languages, although TeeTime is
written in the Java programming language. A manual and the source code of TeeTime are
publicly available at Sourceforge'.

Hence, our contributions are:

* An approach for a generic and concurrency-aware Pipes-and-Filters framework, and

* areference implementation for the Java programming language.

The rest of this document is structured as followed. First, we present related work and
existing frameworks in Section 2. In the subsequent two sections, we describe our ap-
proach focusing on its architecture in Section 3 and its concurrency handling in Section 4.
Section 5 finally contains our conclusion and future work.

2 Related Work

Due to the fact that Pipes-and-Filters is a frequently used pattern, various generic solutions
exist already. We present and discuss an excerpt of existing frameworks focusing on Java-
based implementations. Furthermore, we list work regarding strategies for the concurrent
execution of stages.

'https://sourceforge.net/projects/teetime/
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2.1 Current Java-based Pipes-and-Filters Frameworks

A generic Pipes-and-Filters framework is Apache Commons Pipeline®. This framework
can take advantage of additional threads, but assumes that the stages are implemented in a
thread-safe manner. Furthermore, the project has no released version and is not developed
any further since 2009.

Apache Camel® is a Java framework to configure routing and mediation rules using the
enterprise integration patterns. It can also be used to assemble Pipes-and-Filters oriented
systems. However, in contrast to TeeTime, it does neither support typed ports nor the con-
current execution of multiple stages. The official recommendation to handle concurrency
is, among others, the usage of a database as synchronization point*.

Ptolemy II [BL10] is a Java framework that supports experimenting with the actor-oriented
design. Although it can be used to assemble networks in a Pipes-and-Filters oriented
style, it requires additional knowledge to configure and execute a pipeline configuration
that goes beyond the Pipes-and-Filters pattern. Furthermore, its use of a scheduler and
coarse-grained synchronization mechanisms results in an additional run-time overhead.

The Kieker Monitoring and Dynamic Analysis Framework> provides a Pipes-and-Filters-
API to create analysis networks. Due to its drawbacks mentioned in Section 1, we will
replace it by TeeTime’s API.

ExplorViz [FWBH13] is a tool that enables live trace visualization for system and pro-
gram comprehension in large software landscapes. It comprises a Pipes-and-Filters-based
component that is tailored to the processing of program traces. Hence, it is not suited as a
generic Pipes-and-Filters framework.

XML Calabash® is an implementation of the XML pipeline language XProc. 7 This lan-
guage can be used to describe pipelines consisting of atomic or compounded operations
on XML documents.

Pipes® is a Java-based framework using process graphs. So called pipes represent the
atomic computing steps and form, once connected, the processing graph. As the pipes im-
plements interfaces with generics, they are type-safe, but have to be arranged in sequential
order.

Java 8 introduced a new streams API that allows to successively apply multiple functions
on a stream of elements. Besides the lack of reading from and writing to more than one
stream at once, its support for executing stages in parallel is limited to particular use cases.

Akka® is a framework for both Scala and Java following the actor model [HBS73]. It
focuses on scalability (regarding concurrency and remoting) and fault tolerance. Although

2http://commons.apache.org/sandbox/commons-pipeline/
3https://camel.apache.org/

4see http://camel.apache.org/parallel-processing-and-ordering.html
Shttp://kieker-monitoring.net/

Shttp://xmlcalabash.com/

Thttp://www.w3.org/TR/xproc/
8https://github.com/tinkerpop/pipes/wiki

http://doc.akka.io
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it is possible to map Akka’s actor-based API to a Pipes-and-Filters-based one, Akka is not
optimized for the execution of pipeline architectures.

2.2 Concurrent Execution of Stages

There are at least two common strategies to execute a pipeline configuration concur-
rently [SLY ™11, SQKPI10].

The first strategy (S1) distributes the given threads over a distinct subset of the declared
stages, e.g., each thread executes a single stage. Depending on whether two connected
stages are executed by the same thread or by different threads, the corresponding pipe is
synchronized or unsynchronized, respectively. Stages are typically not synchronized as
each of them is executed by only a single thread.

The major challenge of this strategy lies in finding the optimal assignment of threads to
stages. While static assignment approaches are usually more efficient for stable and pre-
dictable pipeline configurations, dynamic assignment approaches can additionally handle
imbalanced stages.

The second strategy (S2) assigns a copy of the whole pipeline structure to each thread.
Each thread maintains a sorted list of all available pipes. Moreover, each thread uses a
scheduler that iteratively takes one of the last stages of the pipeline whose input pipes are
non-empty. This strategy does not require pipes to be synchronized, but rather stateful
stages since the copies of a stage usually share one single state.

Some approaches [SLY 11, NATC09] use work-stealing pipes to balance the workload
across all available threads. Such pipes then require single-producer-multiple-consumers
data structures that cause additional run-time overhead due to further synchronization and
management effort.

3 Toward the TeeTime Framework

Our framework targets software engineers that need to process data in a stream-oriented,
throughput-optimized, and type-safe fashion. Although our reference implementation is
written in Java, our framework’s software architecture can be easily adapted to other
object-oriented programming languages that are aware of threads and type parameters,
e.g., C#.

We base our framework on the Tee-and-Join-Pipeline design pattern [BMR196], a gener-
alized version of the Pipes-and-Filters design pattern. It allows a stage to be connected by
more than one input and output pipe. For this reason, we call our reference implementation
TeeTime.

After giving an overview of our framework’s architecture, we describe the most important
features in more detail.

73



AnalysisConfiguration Analysis
-consumerStages : List <<use>> |+tAnalysis(AnalysisConfiguration)
-finiteProducerStages : List [&< - - - - - - +init()

-infiniteProducerStages : List +start() : Collection<Pair<Thread, Throwable>>
AbstractStage <<Interface>>
#logger : Logger IStage
#d:Sting = |---------- >l +execute()
+onSignal(ISignal, InputPort)
A
! 1
! I
inputPorts outputPorts <<use>> | | <<use>>
1
I
I
1 \I/
* * <<Interface>>
InputPort<T> OutputPort<T> c<uses> ISignal
+receive() : T +send(m) [~ 77777 >|+trigger(Stage)
+read() : T +sendSignal(ISignal) N
1
<<use>>

<<Interface>>

IPipe
AbstractPort<T> i +insert(Object)
-type : Class<T> O V2 pipe > +remove() : Object
+insertSignal(ISignal)
+removeSignal() : ISignal

Figure 2: Overview of the basic entities in our Pipes-and-Filters framework architecture

3.1 Overview of the Software Architecture

The core of our framework consists of four basic entities: Stages, Ports, Pipes, and
AnalysisConfigurations.

A stage represents a processing unit within a pipeline that takes elements from its input
ports, uses them to compute a result, and puts this result to its output ports. Therefore, the
concept of ports allows a stage to communicate with multiple predecessors and successors.
Additionally, a stage is assigned a unique identifier and a logger to ease in debugging.

A pipe connects an output port of one stage with an input port of another stage by means
of a queue. However, a pipe can also be used to realize self-loops by connecting an output
port with an input port of the same stage.

An analysis configuration represents a concrete pipeline setup. It defines the stages that
should be used and connects their ports with each other.

In Figure 2 we show an overview of the basic entities in our Pipes-and-Filters framework
architecture.
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3.2 Stage Scheduling

Our framework does not make use of an explicit stage scheduler to decide what stage
should be executed next. Instead the pipes between the stages undertake this task.

Each time a stage sends an element to one of its output port, the corresponding connected
pipe stores the element in its internal queue. Depending on the pipe’s implementation,
it then either triggers the execution of the receiver stage or it immediately returns to the
sender stage.

The former implementation is used to realize intra-thread communication, i.e., to connect
two stages that are executed by the same thread. It ensures progress and reduces the mem-
ory usage since passing an element through the whole pipeline has the highest priority.
This strategy is also known as the backpressure technique.

The latter implementation is used to realize inter-thread communication, i.e., to connect
two stages that are executed by two different threads. It causes only a minimal delay in the
execution of the sending stage.

In this way, we gain the highest possible throughput with respect to the framework’s flex-
ible architecture. For example, we require a throughput of ten thousands to millions of
elements per second when analyzing monitoring logs with Kieker. In such situations, an
explicit scheduler causes too much run-time overhead because it needs to switch too often
between all stages.

The avoidance of a dedicated scheduler additionally reduces the overall complexity of
the framework itself and allows the (JIT-)compiler to perform further optimizations, e.g.,
utilizing cache locality due to back-pressuring [SLYT11].

3.3 Type-safe Connection of Stages

We extend our framework with typed ports to provide a fully type-safe environment.
Therefore, it is impossible to connect two incompatible ports which dramatically reduces
the need for debugging.

The framework checks for type safety at compile-time and at run-time. The former is
realized by specifying a type parameter for each port. In this way, the compiler is able to
verify that a pipe connects two ports of the same type.

The latter is realized by checking whether each two ports have the same type attribute
(cp. Figure 2) just before a pipeline is being executed. It is not possible to check the
type parameter at run-time because some object-oriented programming languages, such as
Java, perform type-erasure on the type parameters.
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3.4 Reacting to Signals

We further extend our framework by a generic signal concept. A signal represents an event
that is triggered within one stage and passed to all other stages with respect to the given
pipeline architecture.

Similar to transmitting an element, a signal is sent from an output port to an input port us-
ing a pipe. For this purpose, both the intra-thread and the inter-thread pipe implementation
already mentioned above have another internal queue that is used for signals only.

For example, a StartingSignal is triggered and processed by the first stage when the
execution of a pipeline begins. Afterwards the signal is passed to all successor stages of
the first stage where the same procedure is repeated until the last stage has processed the
signal.

Besides the StartingSignal, our framework implementation currently provides a
ValidatingSignal that occurs when the connections of a stage are being validated
and a TerminatingSignal that occurs when the execution of a pipeline is being ter-
minated.

Moreover, our framework allows to add further signal types. A new signal type must
conform to the ISignal interface and needs to be triggered once. The correct signal
passing is then handled by our framework automatically.

3.5 Composition of Stages

Stage composition is a key concept that allows to build on top of already available stages.
It effectively hides complexity and also improves the usability. For this reason, our frame-
work offers direct support for composing stages.

3.6 Basic Stages

While developing and using Kieker [RVHM ™08, vHRH109, vHWH12], we have identi-
fied various atomic stages that are often used either directly or indirectly to build more
complex, high-level stages. Below, we describe some of the most important ones in more
detail.

Distributor The distributor is characterized by one input port and a customizable num-
ber of output ports. It takes an element from its input port and distributes it to its output
ports. The distributor uses the DistributionStrategy interface to decide how the
input element should be distributed among the output ports. We currently provide im-
plementations that forwards the input element either to one output port according to the
round-robin style, or to each output port. Instead of simply forwarding the element, a
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solution would be conceivable where the distributor delivers a deep clone of the input
element.

Merger The merger is characterized by a customizable number of input ports and a
single output port. It takes elements from a subset of its input ports and merges them to
its output port. Similar to the distributor, the merge step is done according to a particular
implementation of the MergeStrategy interface. We currently provide a round-robin
implementation that forwards the element of the next non-empty input port to the output
port.

File system stages The directory reader outputs all available files within a given direc-
tory. The text line file reader reads in a text file from its input port and successively sends
each text line via its output port. The file writer takes a byte array from its input port and
writes it to a pre-configured file.

Generic stages Besides the stages mentioned above, there are also generic stages that
process elements independent of the elements’ types. The repeater stage takes one element
from its input port and outputs a multiple of it to its output port. The delay stage delays
the passing of an element to its successor stage by a customizable amount of time. The
throughput stage counts the number of passing elements and outputs the corresponding
throughput if it is triggered by another stage to do so. The InstanceOfFilter stage checks
whether an incoming element matches a configurable particular type and passes it to one
of its two output ports representing a valid or invalid match.

Further stages We continuously extend the set of provided stages. Besides the basic
ones mentioned above, we currently offer stages that, e.g., count the words contained in a
string, encrypts and decrypts a byte array, and outputs the current time in a configurable
regular interval.

We also provide stages that interact with I/O devices, such as the file system and the
network (via TCP, IMX, JMS, and JDBC). In this way, it is also possible to build a pipeline
distributed over several computing nodes.

3.7 Example stage

We now consider the TeeTime implementation of the directory reader described above
(see Listing 1) to show (1) that the API only requires few additional knowledge beyond
the Pipes-and-Filters pattern itself and (2) that it is able to abstract from any concurrent
data structure or directive.

The stage extends the ConsumerStage that, among others, provides methods for the
declaration of ports (see line 3) and encapsulates the handling of the first input port by
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means of the parametrized execute method (see line 11). If a stage requires more than
one input port, it simply declares it and checks the ports on available input.

Line 5 and 6 contain the declarations of a file filter and a file comparator, respectively. Both
are used in the execute method to list only relevant files (see line 12) in the desired order
(see line 20). Finally, the read files are successively send via the declared output port (see
lines 23-25).

Hence, the source code only contains those statements that are necessary to declare a
directory reader. In particular, it does not make use of any concurrent data structure,
e.g., a concurrent blocking queue, and any concurrent directive, such as volatile or
synchronized to interact with its predecessor or successor stage.

Listing 1: The TeeTime implementation of the directory reader

public class Directory2FilesFilter extends ConsumerStage<File> {
private final OutputPort<File> outputPort = this.createOutputPort();

private FileFilter filter;
private Comparator<File> fileComparator;

// omitted costructors

@Override
protected void execute(final File inputDir) ({
final File[] inputFiles = inputDir.listFiles (this. filter);

if (inputFiles == null) {
this.logger.error ("Directory,,
an_I/0O_error_occured.");
return ;

s "o

+ inputDir + _does_not_exist_or,_

}

if (this.fileComparator != null) {
Arrays.sort(inputFiles , this.fileComparator);

}

for (final File file : inputFiles) {
this .send(this.outputPort, file);

}
}

// omitted getter and setter

public OutputPort<File> getOutputPort() {
return outputPort;

}
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4 Concurrency Handling

To the best of our knowledge there is no similar Pipes-and-Filters framework that man-
ages and handles a concurrent execution in such a transparent and efficient way. In the
following, we describe how our approach concurrently executes the stages, how it handles
synchronization issues, and how it does everything in a highly efficient and automatic way.

4.1 Concurrent Execution of Stages

Since there are several different use cases for using a Pipes-and-Filters-oriented architec-
ture, we do not commit ourselves to one of the two strategies mentioned in Section 2.
Instead, we recommend a hybrid approach that makes use of both approaches.

Consider the sample pipeline consisting of a producer and a consumer whereby elements
are produced faster than consumed. In this scenario, duplicating and executing the pro-
ducer in more than one thread does not increase the throughput since the consumer is the
bottleneck. Furthermore, if the producer reads from an I/O device, instantiating more than
one producer is often not advisable since most I/O devices can be accessed only in a se-
quential way excluding any concurrent access. However, duplicating and executing the
consumer stage increases the performance provided the internal state can be shared effi-
ciently. Hence, a combination of S1 and S2 can perform better than each of the strategies
in isolation.

4.2 Automatic Thread Instantiation and Management

To enable concurrent execution of stages, a number of threads and a suitable management
handling their life-cycle is required. Instead of manually instantiating and managing these
threads for each individual pipeline, we propose a more abstract concept that encapsulates
such technical issues by our framework.

For this purpose, each stage is declared either as consumer or producer where a producer
is further divided into finite or infinite.

A consumer changes its internal state and/or produces one or more output elements if and
only if it receives one or more input elements. Thus, a consumer stage provides at least
one input port. It terminates when it receives a termination signal.

A producer changes its internal state and/or produces one or more output elements ac-
cording to its semantics. It provides no input ports and is responsible for its termination.

A producer is finite if it terminates itself after a finite number of executions. A producer is
infinite if it does not terminate autonomously. In this case, the framework terminates the
producer stage after all finite producers are terminated.

Based on this categorization, the framework is able to determine the amount of threads
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necessary for the execution and the assignment of the stages to the threads. For instance,
since a producer is independent of other stages, it can be executed concurrently. However,
for the sake of fine-grained optimizations, it is also possible to manually assign stages to
threads.

4.3 Synchronization of Stages

4.3.1 Synchronization by Pipe

In our framework, a pipe is responsible for the transmission of elements between two
stages.

When connecting two stages within the same thread, the framework chooses an unsyn-
chronized pipe implementation holding a single element. Once a stage sends an element,
the corresponding pipe stores it and executes the receiver stage. The receiver stage finally
pulls the element from the pipe.

When connecting two stages executed within two different threads, the framework chooses
a pipe implementation consisting of a synchronized queue. Once a stage sends an element,
the corresponding pipe adds it in a non-blocking fashion to the queue. The receiver stage
can either use a busy-waiting or a blocking strategy in order to pull the element from the
pipe.

The synchronized queue is a highly optimized implementation'® for the single-producer/
single-consumer scenario. It is lock-free, cache-aware, and uses only a few well-placed
load/load and store/store barriers for the synchronization. In particular, it does not make
use of any types of the Java Concurrency API and of any volatile declaration. We have
also tested a pipe implementation that bases on the work-stealing paradigm, however it
performs significantly slower due to the heavy use of volatile fields.

4.3.2 Synchronization by Shared State

We call a stage stateful if it contains attributes and uses them to compute its outputs.
Otherwise we call a stage stateless. It is recommended to implement stages in a stateless
way, as this avoids synchronization overhead and issues between stages. However, in the
Kieker project we identified various scenarios relying on stateful stages.

For instance, consider an aggregation stage that outputs a result not until a particular num-
ber of executions. Before reaching such a threshold, this stage needs to memorize the
result of the current and all previous executions.

Our framework does not yet help in synchronizing a shared state although we plan to
abstract from particular scenarios (see Section 5). Currently, a developer must be aware
of concurrency issues that could arise due to a shared state and has to ensure a proper
synchronization.

Onttps://github.com/JCTools/JCTools/
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5 Conclusions and Outlook

In this paper, we indicated the drawbacks of current Pipes-and-Filters frameworks and pro-
posed a more flexible and concurrency-aware Pipes-and-Filters framework architecture. It
focuses on a type-safe application programming interface that makes complex decisions
for the programmer and abstracts from technical issues to avoid building an incorrect and
inefficient pipeline. We also provide a fast Java-based reference implementation called
TeeTime.

We constantly improve our framework by reducing the management overhead, by adding
more functionality, and by simplifying the API. Our next step is to give the responsibility
of choosing and instantiating a pipe completely to the framework. Afterwards, we plan to
automatize the thread assignment as much as possible so that ideally the programmer only
needs to describe the pipeline structure and to specify the number of processor cores to
use. For this purpose, we follow the idea to utilize further stage information available at
compile-time, such as the ratio of the input and output ports or the properties of a stage’s
state. Moreover, we work on an automatic exception handling by the framework and a
way to save and load arbitrary pipeline configurations that were created at run-time.
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