
Proc. SOSP 2014, Nov. 26–28, 2014, Stuttgart, Germany
Copyright c© 2014 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

Evaluating the Prediction Accuracy of Generated
Performance Models in Up- and Downscaling Scenarios

Andreas Brunnert1, Stefan Neubig1, Helmut Krcmar2

1fortiss GmbH
Guerickestr. 25, 80805 München, Germany

{brunnert, neubig}@fortiss.org
2Technische Universität München

Boltzmannstr. 3, 85748 Garching, Germany
krcmar@in.tum.de

Abstract: This paper evaluates an improved performance model generation approach
for Java Enterprise Edition (EE) applications. Performance models are generated for
a Java EE application deployment and are used as input for a simulation engine to
predict performance (i.e., response time, throughput, resource utilization) in up- and
downscaling scenarios. Performance is predicted for increased and reduced numbers
of CPU cores as well as for different workload scenarios. Simulation results are com-
pared with measurements for corresponding scenarios using average values and mea-
sures of dispersion to evaluate the prediction accuracy of the models. The results show
that these models predict mean response time, CPU utilization and throughput in all
scenarios with a relative error of mostly below 20 %.

1 Introduction

Numerous performance modeling approaches have been proposed to evaluate the per-
formance (i.e., response time, throughput, resource utilization) of enterprise applications
[BDMIS04, Koz10, BWK14]. These models can be used as input for analytical solvers
and simulation engines to predict performance. Performance models are especially useful
when scenarios need to be evaluated that cannot be tested on a real system. Scaling a sys-
tem up or down in terms of the available hardware resources (e.g., number of CPU cores)
are examples for such scenarios.

Evaluating the impact of up- or downscaling on performance is a typical activity during
the capacity planning and management processes. Capacity planning concerns questions
such as ”How many hardware resources are required for the expected workload of new en-
terprise application deployments?” and involves evaluating the behavior of an application
when a system is scaled up. Capacity management on the other hand is usually concerned
with evaluating whether the existing hardware resources are sufficient for the current or
expected load. This involves not only upscaling but also downscaling scenarios in which
the amount of hardware resources needs to be reduced to save costs (e.g., license fees that
depend on the number of CPU cores used).

113



Nowadays, creating a performance model requires considerable manual effort [BVD+14].
This effort leads to low adoption rates of performance models in practice [Koz10]. To
address this challenge for Java Enterprise Edition (EE) applications, we have proposed an
automatic performance model generation approach in [BVK13]. This work improves the
existing approach by further reducing the effort and time for the model generation.

In order to evaluate whether the automatically generated performance models are fit for
use during capacity planning and management, we evaluate the improved model genera-
tion approach in up- and downscaling scenarios. In a first step, an automatically generated
performance model is used to predict the performance of a system in an upscaling sce-
nario, in which additional CPU cores are added to the system. Afterwards, a downscaling
scenario is evaluated in which the number of CPUs is reduced. During the evaluation of
the up- and downscaling scenarios not only the number of CPU cores is modified, but also
the amount of users interacting with the system simultaneously.

2 Generating Performance Models

This section is based on our previous work on generating performance models for Java
EE applications [BVK13]. In this work, we are using the same concepts for the model
generation but reduce the time required for generating a performance model to mostly less
than a minute. To make this work self-contained, a brief overview of the model generation
process is given, changes are described in more detail. The model generation process is
divided into a data collection and a model generation step, the explanation follows these
two steps.

2.1 Data Collection

The data that needs to be collected to create a representative performance model is depen-
dent on which components should be represented in the model [BVK13]. Following Wu
and Woodside [WW04], Java EE applications are represented using the component types
they are composed of. The main Java EE application component types are Applets, Ap-
plication Clients, Enterprise JavaBeans (EJB) and web components (i.e., JavaServer Pages
(JSP) and Servlets) [Sha06]. As Applets and Application Clients are external processes
that are not running within a Java EE server runtime, the remainder of this paper focuses
on EJB and web components. To model a Java EE application based on these component
types, the following data needs to be collected [BVK13]:

1. EJB and web component as well as operation names

2. EJB and web component relationships on the level of component operations

3. Resource demands for all EJB and web component operations

114



-type : string(idl)

-componentName : string(idl)

-operationName : string(idl)

OperationIdentifier

JavaEEComponentOperationMBeanBranchDescriptor-invocationCount : long(idl)

-totalCPUDemand : long(idl)

-totalResponseTime : long(idl)

-totalAllocatedHeapBytes : long(idl)

BranchMetrics

ExternalOperationCall

ParentOperationBranch

-loopCount : long(idl)

-loopCountOccurrences : long(idl)

OperationCallLoopCount

1*1*11

1

*

1*

1

1
1

*

1*

{ordered}

Figure 1: JavaEEComponentOperationMBean data model

In [BVK13] we have collected this information using dynamic analysis, saved it in comma-
separated value (CSV) files and used an additional process step to aggregate this informa-
tion into a database. To speed up the model generation process we are no longer using files
as persistence layer and have removed the additional step of aggregating the data stored
in the files in a relational database. Instead, the data required for modeling an applica-
tion is collected and aggregated in Managed Beans (MBeans) [Mic06] of the Java Virtual
Machine (JVM). MBeans are managed Java objects in a JVM controlled by an MBean
server.

The reason for choosing MBeans as persistence layer is that the Java Management Exten-
sion (JMX) specification defines them as the standard mechanism to monitor and manage
JVMs [Mic06]. The JMX and related specifications also define ways to manage, access
and control such MBeans locally as well as from remote clients. For example, the JMX
remote application programming interface (API) allows access to all MBeans of a system
remotely using different network protocols. Building upon the JMX standard therefore
ensures that the approach is applicable for all products that are compliant with the Java EE
[Sha06] and JMX [Mic06] specifications.

One of the key challenges for the transition from CSV files to MBeans is to find a data
model with low impact on an instrumented system. The instrumentation for the dynamic
analysis collects structural and behavioral information as well as resource demands for
each component operation invocation. As storing the data for each invocation separately
in an MBean is not possible due to the high memory consumption, the data needs to be
aggregated. Additionally, recreation of existing control flows from the data needs to be
possible. To accompany these requirements and to implement the MBean data collection
with low impact on the monitored system, the data model shown in figure 1 is used.

A JavaEEComponentOperationMBean is registered for each externally accessible com-
ponent operation. Internal component operations are not represented in the data model.
Each JavaEEComponentOperationMBean instance is identified by an OperationIdentifier
attribute. The OperationIdentifier is a unique identifier of a component operation in a
Java EE runtime. It therefore contains the respective componentName (i.e., EJB or web
component name), the component type (i.e., Servlet/JSP/EJB) and its operationName (i.e.,
Servlet/JSP request parameter or EJB method name).

The component relationships are also stored in the data model. These relationships differ
depending on component states as well as input and output parameters of their operations
(i.e., whether an external operation is called or not). To simplify the data model, com-

115



ponent states and parameters of component operations are not represented. Instead, the
invocation counts for different control flows of a component operation are stored in the
model.

A control flow of a component operation is represented by the BranchDescriptor class and
its ordered list of ExternalOperationCalls. ExternalOperationCalls are identified using an
OperationIdentifier attribute. Using this attribute, ExternalOperationCalls can be linked
to the corresponding JavaEEComponentOperationMBeans. This link allows recreating
the complete control flows of requests processed by applications in a Java EE runtime.

ExternalOperationCalls have an additional OperationCallLoopCount attribute, which is
used to track the number of times an external operation is called in a row. This attribute
helps to limit the amount of data that needs to be stored in the MBeans, as repeating
invocations do not need to be stored separately. Instead, each loopCount that may occur
in an otherwise equal control flow can be tracked using the same data structure. For each
loopCount, the OperationCallLoopCount class stores the number of times a loopCount
occurred in the loopCountOccurrences attribute.

A BranchDescriptor also contains a BranchMetrics attribute, which tracks the number of
times a control flow occurred (invocationCount) and how much CPU, heap and response
time is consumed by the current component operation in this control flow in total. This
information allows calculating the control flow probability and its resource demand during
the model generation.

To differentiate requests processed by applications in a Java EE runtime, control flows of
an operation are grouped according to the component operation that is invoked first during
a request (i.e., by users or external systems). This grouping is specified in the Parent-
OperationBranch class. It maps a list of BranchDescriptors to a JavaEEComponent-
OperationMBean and contains a reference to the OperationIdentifier of the first operation.
This reference improves the data collection and model generation performance.

2.2 Performance Model Generation

The data stored in the MBean data model (see figure 1) is used to generate component-
based performance models. The meta model for the generated models is the Palladio
Component Model (PCM) [BKR09]. PCM consists of several model layers that are all re-
quired to use PCM for performance predictions [BKR09]. This section describes how the
repository model layer can be generated automatically as the other model layers can only
be created using the information contained in this model. The PCM repository model con-
tains the components of a system, their operation behavior and resource demands as well
as their relationships. Repository model components are assembled in a system model to
represent an application. User interactions with the system are described in a usage model.
The other two model layers in PCM are the resource environment and allocation model.
The purpose of a resource environment model is to specify available resource contain-
ers (i.e., servers) with their associated hardware resources (CPU or HDD). An allocation
model specifies the mapping of components to resource containers. To simplify the use

116



(a) Repository model example
[BVK13]

Control Flow 1 Control Flow 2

(b) RDSEFF of ComponentA.operationA
[BVK13]

(c) RDSEFF of Compo-
nentB.operationC

(d) Heap component (e) Calling Heap.alloc and Heap.free from RDSEFFs

Figure 2: PCM repository model elements

of generated repository models, default models for the other PCM model layers are gener-
ated automatically once the repository model generation is complete [BVK13]. The PCM
usage model is not generated automatically and has to be modeled manually.

Following the data model in figure 1, JavaEEComponentOperationMBean instances in a
Java EE runtime are used to generate a repository model. The model generation is imple-
mented as a Java-based client that accesses the MBean data using the JMX Remote API.
The list of available JavaEEComponentOperationMBeans is first of all used to generate
component elements in the repository model (e.g., ComponentA and ComponentB in fig-
ure 2(a)). The component list can be derived from the data model by filtering the available
JavaEEComponentOperationMBeans by the componentName attribute of the associated
OperationIdentifier. Operations provided by Java EE components are also available in
the same data structure and are generated in the same step. In a PCM repository model,
operations provided by a component are specified in an interface (e.g., IComponentA and
IComponentB in figure 2(a)).

Afterwards, the data in the list of ExternalOperationCalls for each BranchDescriptor of a
JavaEEComponentOperationMBean is used to represent component relationships. These
relationships are specified in a repository model by a requires relationship between the
repository component that calls a specific component operation and the interface that pro-
vides this operation (e.g., ComponentA requires IComponentB in figure 2(a)). The model
generation can therefore use information about external operations called in specific oper-
ation control flows (using the OperationIdentifier of the ExternalOperationCalls) to create
the relationships of repository model components.

So far, only components, interfaces and their relationships are available in the repository

117



model. In the next step, the behavior of component operations needs to be specified.
The component operation behavior is specified in Resource Demanding Service Effect
Specifications (RDSEFF). RDSEFFs are behavior descriptions similar to activity diagrams
in the Unified Modeling Language (UML).

As explained in the data collection section 2.1, a component operation can be included in
different requests processed by a Java EE runtime (see ParentOperationBranch in figure
1). To represent the resulting behavior differences in a performance model, a parent-
operation parameter is passed between component operations. An example can be found
in figure 2(b): operationA of ComponentA is the first operation called during a request,
it thus specifies the parentoperation as ComponentA operationA in the external call to
ComponentB.operationC. This parameter is used in the RDSEFF of operationC of Com-
ponentB to differentiate the operation behavior depending on the parameter value (see fig-
ure 2(c)). The initial parentoperation parameter value that is set when a request starts
is passed on to all sub-invocations. For example, ComponentA operationA would be
passed on if ComponentB.operationC would call another external operation within this
request. The behavior description of ComponentA.operationA in figure 2(b) is also con-
tained in a guarded branch with the condition that the current operation needs to be Com-
ponentA operationA. This is necessary to ensure that all component operations can be
used equally in the PCM repository and usage model layers. Thus, operations that only
start requests and those that are also (or only) used within requests are indistinguishable.

A component operation can behave differently even though the same parentoperation ini-
tiated the request processing. These control flow differences are represented in RDSEFFs
using probability branches [BKR09]. The probability of each branch (=BranchDescriptor)
can be calculated based on data in BranchMetrics objects. If only one BranchDescriptor
object exists for a ParentOperationBranch object, the probability is one. Otherwise, the
invocationCount sum of all BranchMetrics objects for a ParentOperationBranch is used to
calculate the probability for a single probability branch in a RDSEFF. An example for such
probability branches can be found in figure 2(b). The RDSEFF of ComponentA.operationA
contains two probability branches (Control Flow 1 and Control Flow 2). One is executed
with 60 % probability whereas the second is executed with 40 % probability. The Oper-
ationCallLoopCounts for different ExternalOperationCalls in a specific branch are repre-
sented as loop probabilities. For example, in figure 2(b), the external call to operationC of
ComponentB is executed five times in 20 % of the cases and nine times in the other 80 %.

Resource demand data in BranchMetric objects is also represented in a probability branch
of a RDSEFF. The mean CPU demand in milliseconds (ms) calculated based on the
BranchMetrics data can be directly assigned to an internal action of a probability branch.
In the example in figure 2(b), ComponentA.operationA consumes 0.123 ms CPU time in
Control Flow 1, whereas Control Flow 2 consumes 0.456 ms.

Representing heap memory demand of a component operation is not directly supported
by the PCM meta model. Therefore, the passive resources element of the meta model is
reused for this purpose [BKR09]. Even though passive resources are intended to be used
as semaphores or to represented limited pool sizes (e.g., for database connections), one can
also use them to create a simplistic representation of the memory demand of an applica-
tion. For this purpose, a heap component is generated in each repository model as shown

118



in figure 2(d). This heap component contains a specified amount of passive resources that
represents the maximum heap size available in a JVM. The maximum configurable value
for the available passive resources of the heap component is 231-1. Thus, if one interprets
one passive resource as one byte (B), the maximum configurable heap is two gigabytes
(GB). As this is a very low value for Java EE applications nowadays, the model genera-
tion can be configured to interpret one passive resource as 10 bytes, so that the maximum
representable heap is 20 GB. To do this, all heap memory demands read from the Branch-
Metrics objects are divided by ten and are rounded because passive resources can only be
acquired as integer values. As this reduces the accuracy of the model, one passive resource
is interpreted as one byte by default.

To allow other component operations in the repository model to consume heap memory,
the heap component offers two operations: alloc(int bytesRequested) and free(int bytes-
Released) (see figure 2(d)). This model follows the API for applications written in the
programming language C. Using the information about the heap demand gathered in the
data collection step (see section 2.1), calls to the Heap.alloc operation are generated at
the beginning of each execution flow and calls to Heap.free at the end. An example is
shown in figure 2(e): operationD of ComponentC calls alloc with a value of 200 bytes
at the beginning, performs some internal processing and releases the 200 bytes allocated
previously. Even though this memory model representation is not realistic for Java appli-
cations as the garbage collector (GC) behavior is not represented, the overall utilization of
the passive resources helps to get an idea of the heap memory demand of an application.

3 Evaluating the Performance Prediction Accuracy

The feasibility of the model generation approach is evaluated in a case study using a
SPECjEnterprise20101 industry standard benchmark deployment. SPECjEnterprise2010
is used for this evaluation to make it reproducible as it defines an application, a workload
as well as a dataset for a benchmark execution.

3.1 SPECjEnterprise2010 Deployment

The SPECjEnterprise2010 benchmark represents the business case of an automobile man-
ufacturer. It is divided into three application domains. The evaluation in this paper focuses
on the Orders domain. This domain is used by automobile dealers to order and sell cars. To
avoid the need to model all domains, the communication between the Orders and the other
domains is disabled. The setup of the Orders domain consists of a benchmark driver to
generate load and a system under test (SUT) on which the Orders domain application com-

1SPECjEnterprise is a trademark of the Standard Performance Evaluation Corp. (SPEC). The SPECj-
Enterprise2010 results or findings in this publication have not been reviewed or accepted by SPEC, therefore
no comparison nor performance inference can be made against any published SPEC result. The official web site
for SPECjEnterprise2010 is located at http://www.spec.org/jEnterprise2010.

119



ponents are executed. The Orders domain is a Java EE web application that is composed of
Servlet, JSP and EJB components. The automobile dealers (hereafter called users) access
this application using a web interface over the hypertext transfer protocol (HTTP) and can
perform three different business transactions: browse, manage and purchase. These three
business transactions are composed of several HTTP requests to the system. The user
interactions with the system are implemented as load test scripts in the Faban harness2.
Faban is a workload creation and execution framework which is used to generate load on
the SUT.

The benchmark driver and the SUT are each deployed on a virtual machine (VM) to sim-
plify changing the number of available CPU cores. These two virtual machines are con-
nected by a one gigabyte-per-second network connection and are mapped to an IBM Sys-
tem X3755M3 hardware server which is exclusively used for the SPECjEnterprise2010
benchmarks performed for this evaluation. Both virtual machines run CentOS 6.4 as op-
erating system and are configured to have 20 GB of random-access memory (RAM). The
benchmark driver is equipped with eight CPU cores, the number of CPU cores of the SUT
is varied during the evaluation. The SPECjEnterprise2010 Orders domain application is
deployed on a JBoss Application Server (AS) 7.1.1 in the Java EE 6.0 full profile. The
database on the SUT VM is an Apache Derby DB in version 10.9.1.0. The JBoss AS and
the Apache Derby DB are both executed in the same JVM, which is a 64 bit Java Open-
JDK Server VM in version 1.7.0. An external Java-based client for the model generation
is connected to the SUT using the JBoss JMX remote API.

3.2 Evaluating the Data Collection Overhead

The model generation approach introduced in this work relies on data collected using a
runtime instrumentation. The instrumentation overhead for collecting the required data is
analyzed in this section. As mentioned in the data collection section (see section 2.1), the
instrumentation is capable of collecting the CPU and Java heap memory demand for each
externally accessible component operation. The instrumentation code is therefore always
executed before and after a component operation and can have a great influence on the
performance data stored in the performance model.

To evaluate the impact of the data collection, the resource demand of several control
flows of the SPECjEnterprise2010 Orders domain application is analyzed using differ-
ent data collection configurations. For each of the following data collection configurations
a SPECjEnterprise2010 benchmark run is executed and afterwards a performance model
is generated. The SPECjEnterprise2010 deployment outlined in section 3.1 is used in a
configuration with four CPU cores for the SUT. To avoid influences of warm up effects
and varying user counts, only steady state data (i.e., data collected during 10 minutes be-
tween a five minute ramp up and a 150 second ramp down phase) is collected. The data
collection runs are executed with a workload of 600 concurrent users which corresponds
to a CPU utilization of the SUT of about 50 %. The resulting performance models contain

2http://java.net/projects/faban/

120



Table 1: Measured instrumentation overhead for the data collection - control flow one
Component Operation Model 1.1 Model 1.2 Model 2.1 Model 2.2

Order Name CPU Heap CPU Heap CPU CPU
1 app.sellinventory 1.023 ms 33,650 B 3.001 ms 225,390 B 0.756 ms 3.003 ms
2 CustomerSession.sellInventory 0.785 ms 60,450 B 0.731 ms
3 CustomerSession.getInventories 0.594 ms 49,540 B 0.548 ms
4 OrderSession.getOpenOrders 0.954 ms 70,600 B 0.878 ms
5 dealerinventory.jsp.sellinventory 0.108 ms 16,660 B 0.103 ms

Total Resource Demand 3.464 ms 230,900 B 3.001 ms 225,390 B 3.015 ms 3.003 ms
Mean Data Collection Overhead 0.116 ms 1378 B 0.003 ms

the aggregated resource demands collected in the MBeans for these component operations
and therefore simplify the analysis. The resource demand for the database is already in-
cluded in the following measurements, as the embedded derby DB is executed in the same
thread as the Servlet, JSP and EJB components.

The mean CPU and heap demands for single component operations involved in three dif-
ferent control flows are shown in tables 1, 2 and 3. Both resource demand types (CPU and
heap) are represented as mean values for the data collected during the steady state. The
heap demand values in this table are rounded to 10 byte intervals as the model generation
is configured to do so to have 20 GB of heap available in the model (see section 2.1).

In a first step, a benchmark run is executed while the CPU and heap demand for all com-
ponent operations involved in the request processing is collected. The performance model
generated based on this configuration is called Model 1.1 in tables 1, 2 and 3. Afterwards,
a benchmark run is executed while only the CPU demand for each component operation is
collected. The resulting performance model based on this data collection configuration is
called Model 2.1 in tables 1, 2 and 3. Both benchmark runs are repeated but this time, only
resource demand data (CPU or CPU & heap) for the first component operations (those
where Order==1 in tables 1, 2 and 3) of each HTTP request is collected. These measure-
ments already include the CPU and heap demands of the sub-invocations (Order >1 in
tables 1, 2 and 3). The resulting performance models are called Model 1.2 for the first con-
figuration (CPU and heap collection turned on) and Model 2.2 for the second configuration
(CPU collection turned on).

The total mean CPU and heap demand values in the first model versions (1.1 and 2.1)
are compared with the corresponding values for the second model versions (1.2 and 2.2)
to calculate the instrumentation overhead. It can be shown that collecting heap and CPU
demands for each component operation is a lot more expensive than only collecting CPU
demand. For the HTTP request analyzed in table 1, the mean overhead for the data col-
lection including heap demand is 0.116 ms CPU time and 1378 byte heap memory for
each component operation. If only the CPU demand is collected, the mean data collection
overhead drops dramatically to 0.003 ms for each component operation.

Other execution flows during the same benchmark runs confirm these values (two addi-
tional examples are given in tables 2 and 3). The mean instrumentation overhead for the
CPU-only collection is mostly below 0.020 ms whereas the mean instrumentation over-
head for the CPU and heap collection ranges mostly between 0.060 and 0.120 ms. As
some component operations in the SPECjEnterprise2010 benchmark have an overall CPU

121



Table 2: Measured instrumentation overhead for the data collection - control flow two
Component Operation Model 1.1 Model 1.2 Model 2.1 Model 2.2

Order Name CPU Heap CPU Heap CPU CPU
1 app.view items 0.406 ms 20,560 B 3.529 ms 615,440 B 0.165 ms 3.566 ms
2 ItemBrowserSession.browseForward 3.315 ms 565,130 B 3.282 ms
3 ItemBrowserSession.getCurrentMin 0.003 ms 60 B 0.003 ms
4 ItemBrowserSession.getCurrentMax 0.003 ms 60 B 0.002 ms
5 ItemBrowserSession.getTotalItems 0.003 ms 60 B 0.002 ms
6 purchase.jsp.view items 0.147 ms 40,380 B 0.142 ms

Total Resource Demand 3.877 ms 626,250 B 3.529 ms 615,440 B 3.598 ms 3.566 ms
Mean Data Collection Overhead 0.070 ms 2162 B 0.006 ms

Table 3: Measured instrumentation overhead for the data collection - control flow three
Component Operation Model 1.1 Model 1.2 Model 2.1 Model 2.2

Order Name CPU Heap CPU Heap CPU CPU
1 app.add to cart 0.213 ms 11,300 B 0.393 ms 27,520 B 0.108 ms 0.388 ms
2 OrderSession.getItem 0.276 ms 13,460 B 0.255 ms
3 shoppingcart.jsp.add to cart 0.059 ms 5960 B 0.058 ms

Total Resource Demand 0.548 ms 30,720 B 0.393 ms 27,520 B 0.421 ms 0.388 ms
Mean Data Collection Overhead 0.077 ms 1600 B 0.017 ms

demand of below 0.150 ms, collecting the heap demand for this deployment causes too
much overhead. The following evaluation therefore focuses on models generated based on
the CPU demand collection.

3.3 Comparing Measured and Simulated Results

In the next two sections, the prediction accuracy of generated performance models is eval-
uated in an upscaling and a downscaling scenario. The steps for both evaluations are
similar and are described in the following paragraphs.

Load is generated on the SUT to gather the required data for the model generation in
each scenario using the data collection approach outlined in section 2.1. As the database
is included within the server JVM, the collected data already contains its CPU demands.
Similar to the benchmark runs in the overhead evaluation, only steady state data (i.e., data
collected during 10 minutes between a five minute ramp up and a 150 second ramp down
phase) is collected. Afterwards, a software prototype that implements the performance
model generation approach is used to generate a PCM model based on the collected data.

PCM models can be taken as the input for a simulation engine to predict the application
performance for different workloads and resource environments. The standard simulation
engine for PCM models is SimuCom which uses model-2-text transformations to translate
PCM models into Java code [BKR09]. The code is then compiled and executed to start
a simulation. To evaluate the accuracy of the simulation results, they are compared with
measurements on the SUT. The following comparisons only use steady state data collected
during simulation and benchmark runs of similar length.

The benchmark driver reports the mean response time and throughput for each business

122



transaction for a benchmark run. However, the predicted response time values cannot be
compared with response time values reported by the driver, because they do not contain the
network overhead between the driver and the SUT. Therefore, response time of the busi-
ness transactions browse (B), manage (M) and purchase (P) is measured on the SUT using
an additional instrumentation. To identify business transactions using this instrumenta-
tion, the benchmark driver is patched to add a unique transaction identifier to each request.
This identifier allows combining several HTTP requests into one business transaction. In-
coming requests are aggregated on the fly to the business transaction they belong to by
summing up their response times. The resulting business transaction response time mea-
surements are stored with a timestamp to calculate the mean throughput on a per-minute
basis.

The CPU time consumed by the JVM process of the JBoss AS on the SUT (and thus
its CPU utilization) is collected every second to reconstruct its approximate progression
and to compare the measured and simulated ranges. The calculation of the mean CPU
utilization is based on the first and the last CPU time consumption value in the steady
state of a benchmark run in order to avoid biasing effects caused by unequal measurement
intervals.

Each benchmark run is performed three times, the results are combined giving each run the
same weight. Since all runs have the same duration, the overall mean value of CPU utiliza-
tion can be calculated by averaging the corresponding values of each run. The throughput
values represent the amount of times a business transaction is invoked per minute, thus the
collected per-minute values are combined to a mean value. To evaluate response times,
samples of equal sizes are drawn from each result. Response time measurement and simu-
lation results are described using mean and median values as well as values of dispersion,
namely the quartiles and the interquartile range (IQR). Variance and standard deviation are
excluded from our investigation due to the skewness of the underlying distributions [Jai91]
of the response times of browse, manage and purchase. In the following sections, means
are illustrated tabularly, medians and quartiles are illustrated using boxplot diagrams.

3.4 Evaluating Prediction Accuracy in an Upscaling Scenario

To evaluate the performance prediction accuracy of automatically generated performance
models in an upscaling scenario, the number of CPU cores for simulation and benchmark
runs is increased step by step. To increase the CPU core count of the SUT for the bench-
mark runs, the VM is reconfigured accordingly. The number of simulated CPU cores is
varied by editing the generated resource environment model.

If workload stays stable, the CPU utilization significantly declines with each increase of
cores as does its impact on the overall application performance. As a result, after reach-
ing a sufficient number of CPU cores, the measured response times stay almost constant
regardless of any further increases while the simulated response times decrease further
reaching their lower bound only at a very high number of CPU cores. Therefore, an in-
creasing inaccuracy in the simulated values is expected since the generated model solely

123



Table 4: Measured and simulated results in an upscaling scenario
C U T MMRT SMRT RTPE MMT SMT TPE MCPU SCPU CPUPE

4 600
B 63.23 ms 65.06 ms 2.91 % 1820.6 1813.1 0.41 %

48.76 % 46.87 % 3.88 %M 11.58 ms 13.28 ms 14.71 % 906.8 917.3 1.16 %
P 8.27 ms 9.73 ms 17.67 % 904.9 900.3 0.50 %

6 900
B 69.25 ms 57.56 ms 16.89 % 2708.3 2721.5 0.49 %

51.72 % 46.85 % 9.42 %M 12.54 ms 11.95 ms 4.69 % 1354.3 1354.4 0.01 %
P 8.95 ms 8.72 ms 2.60 % 1352.4 1368.1 1.16 %

8 1200
B 88.82 ms 56.25 ms 36.66 % 3617.8 3641.9 0.67 %

57.34 % 46.97 % 18.09 %M 14.13 ms 11.64 ms 17.67 % 1806.4 1795.0 0.63 %
P 9.31 ms 8.46 ms 9.15 % 1811.6 1819.2 0.42 %

depends on CPU demands and disregards other factors such as I/O operations on hard disk
drives. Thus, to keep the CPU utilized, the workload on the system is varied proportional
to the number of CPU cores by increasing the number of concurrent users accessing the
SUT. In the following, a performance model generated on the SUT configured with 4 CPU
cores is used. The average CPU utilization while gathering the data required for the model
generation was 52.46 % which corresponds to a closed workload consisting of 600 users
with an average think time of 9.9 s.

In a first step, the generated model is evaluated by simulating the application performance
for an environment which is equal to the one the model has been generated with. After-
wards, the model is evaluated for environments with an increased number of CPU cores.
The measured and simulated results are shown in table 4. For each configuration specified
by the number of cores (C) and the number of users (U), the table contains the following
data per business transaction (T): Measured Mean Response Time (MMRT), Simulated
Mean Response Time (SMRT), relative Response Time Prediction Error (RTPE), Mea-
sured Mean Throughput (MMT), Simulated Mean Throughput (SMT), relative Through-
put Prediction Error (TPE), Measured (MCPU) and Simulated (SCPU) Mean CPU Uti-
lization and the relative CPU Utilization Prediction Error (CPUPE).

The simulation predicts the mean response time of the business transactions with a relative
error of less than 20 %, except for the browse transaction in the case of 8 CPU cores and
1200 concurrent users, which shows a relative prediction error of 36.66 %. CPU utilization
is predicted with relative errors ranging from 3.88 % to 18.09 %. Due to space limitations,
the span consisting of the minimum and maximum of the measured and simulated CPU
utilization values is not shown. However, while both ranges mostly overlap, the measured
span lies slightly above the simulated one. The same applies to the mean CPU utilization
values shown in table 4, as the simulated mean is slightly lower than the measured one.
The prediction of the mean throughput is very close to the real values, as the think time of
9.9 s is much higher than the highest response time. Response time prediction errors thus
have a low impact on the throughput. Except for the last simulation of browse, the quality
of the predictions ranges from very good to still acceptable for the purpose of capacity
planning [MAL+04].

Further statistical measures are illustrated as boxplot diagrams in figure 3. Boxplot dia-
grams consist of a box whose bounds denote the first quartile Q1 (lower bound) as well as
the third quartile Q3 (upper bound) of the underlying data sample. The quartiles are con-

124



0

30

60

90

120

150

MRT

Browse

SRT

Browse

re
sp

o
n

se
 t

im
e

 [
m

s]
 

0

5

10

15

20

25

30

35

MRT

Manage

SRT

Manage

re
sp

o
n

se
 t

im
e

 [
m

s]
 

0

5

10

15

20

25

30

35

MRT

Purchase

SRT

Purchase

re
sp

o
n

se
 t

im
e

 [
m

s]
 

(a) 4 CPU cores and 600 users

0

30

60

90

120

150

MRT

Browse

SRT

Browse

re
sp

o
n

se
 t

im
e

 [
m

s]
 

0

5

10

15

20

25

30

35

MRT

Manage

SRT

Manage

re
sp

o
n

se
 t

im
e

 [
m

s]
 

0

5

10

15

20

25

30

35

MRT

Purchase

SRT

Purchase

re
sp

o
n

se
 t

im
e

 [
m

s]
 

(b) 6 CPU cores and 900 users

0

30

60

90

120

150

MRT

Browse

SRT

Browse

re
sp

o
n

se
 t

im
e

 [
m

s]
 

0

5

10

15

20

25

30

35

MRT

Manage

SRT

Manage

re
sp

o
n

se
 t

im
e

 [
m

s]
 

0

5

10

15

20

25

30

35

MRT

Purchase

SRT

Purchase

re
sp

o
n

se
 t

im
e

 [
m

s]
 

(c) 8 CPU cores and 1200 users

Figure 3: Boxplot diagrams of an upscaling scenario

nected by vertical lines to form the box that indicates the interquartile range (IQR) which
is defined as Q3 − Q1. Furthermore, the median Q2 is illustrated by a horizontal line
within the box, thus separating it into two parts. Vertical lines outside the box (whiskers)
indicate the range of possible outliers while their length is limited to 1.5 times the IQR.

The relative prediction error of the median response time ranges from 8.38 % to 33.80 %
for the browse and purchase transactions. The median response time of the manage trans-
action, however, is predicted with a relative error of 36.52 % to 68.29 %. The skewness of a
business transaction’s underlying distribution can be determined considering the median’s
position between the quartiles Q1 and Q3. The boxplot diagrams in figure 3 show that the
skewness is not simulated correctly. To investigate the dispersion of business transactions,
we determine the IQR. Its relative prediction error ranges from 21.96 % to 50.94 % for the

125



Table 5: Measured and simulated results in a downscaling scenario
C U T MMRT SMRT RTPE MMT SMT TPE MCPU SCPU CPUPE

8 800
B 71.54 ms 64.03 ms 10.50 % 2413.9 2415.8 0.08 %

37.41 % 35.17 % 5.99 %M 12.96 ms 12.64 ms 2.49 % 1203.5 1209.2 0.48 %
P 9.36 ms 9.33 ms 0.25 % 1215.9 1228.7 1.05 %

6 800
B 67.62 ms 66.03 ms 2.35 % 2413.9 2425.4 0.48 %

46.38 % 46.94 % 1.21 %M 12.52 ms 13.08 ms 4.45 % 1202.0 1196.6 0.45 %
P 9.05 ms 9.64 ms 6.57 % 1208.2 1215.0 0.56 %

4 800
B 71.15 ms 87.46 ms 22.92 % 2437.0 2420.8 0.66 %

65.60 % 70.27 % 7.12 %M 12.98 ms 17.04 ms 31.29 % 1199.7 1193.5 0.51 %
P 8.93 ms 12.88 ms 44.33 % 1211.6 1212.1 0.04 %

manage and purchase transactions and is up to 83.13 % for the browse transaction.

In the measurement results, the effect of increasing the workload dominates, thus the mea-
sured CPU utilization slightly increases from 48.76 % to 57.34 %. The response times
increase accordingly. In the simulation results, the effect of core increase slightly dom-
inates over the effect of increasing the workload. Therefore, the response times slightly
decrease over the course of the experiment, while the simulated CPU utilization remains
almost constant.

3.5 Evaluating Prediction Accuracy in a Downscaling Scenario

The prediction accuracy of generated performance models in a downscaling scenario is
evaluated by reducing the number of CPU cores step by step. Starting with 8 CPU cores,
the number of cores is decreased by 2 in each evaluation step. This scenario does not
require the number of users to be varied, as the CPU utilization increases. The business
case of scaling the number of CPU cores down is to optimize production systems (e.g., to
evaluate if several applications can be hosted on one machine or to reduce license fees). In
this case, the number of users does not change. Therefore, the workload is kept constant
at 800 users with a think time of 9.9 s accessing the SUT in parallel.

Since the number of cores is reduced during the experiment, a sufficiently low starting
value of CPU utilization is required. Therefore, data to generate a performance model
for this evaluation is collected with an average CPU utilization of 38.9 %. To compare
the simulation results with the measured ones, the previously described evaluation process
is applied. The comparison of the mean response time, CPU utilization and throughput
values is shown in table 5.

The relative prediction error for the mean response time of all business transactions is at
most 44.33 %. CPU utilization is predicted with a maximum relative error of 7.12 %. In
contrast to the upscaling scenario, the simulated CPU utilization grows slightly above the
measured results as the CPU cores are decreased. The relative prediction error of the mean
throughput is about 1 %.

The relative prediction error of the median response time as shown in the boxplots in fig-
ure 4 ranges from 5.27 % to 38.50 % for the browse and purchase transactions and from

126



0

30

60

90

120

150

MRT

Browse

SRT

Browse

re
sp

o
n

se
 t

im
e

 [
m

s]
 

0

5

10

15

20

25

30

35

MRT

Manage

SRT

Manage

re
sp

o
n

se
 t

im
e

 [
m

s]
 

0

5

10

15

20

25

30

35

MRT

Purchase

SRT

Purchase

re
sp

o
n

se
 t

im
e

 [
m

s]
 

(a) 8 CPU cores and 800 users

0

30

60

90

120

150

MRT

Browse

SRT

Browse

re
sp

o
n

se
 t

im
e

 [
m

s]
 

0

5

10

15

20

25

30

35

MRT

Manage

SRT

Manage

re
sp

o
n

se
 t

im
e

 [
m

s]
 

0

5

10

15

20

25

30

35

MRT

Purchase

SRT

Purchase

re
sp

o
n

se
 t

im
e

 [
m

s]
 

(b) 6 CPU cores and 800 users

0

30

60

90

120

150

MRT

Browse

SRT

Browse

re
sp

o
n

se
 t

im
e

 [
m

s]
 

0

5

10

15

20

25

30

35

MRT

Manage

SRT

Manage

re
sp

o
n

se
 t

im
e

 [
m

s]
 

0

5

10

15

20

25

30

35

MRT

Purchase

SRT

Purchase

re
sp

o
n

se
 t

im
e

 [
m

s]
 

(c) 4 CPU cores and 800 users

Figure 4: Boxplot diagrams of a downscaling scenario

50.51 % to 82.96 % for the manage transaction. This is in line with the observations pre-
viously made in the upscaling scenario. The relative IQR prediction error ranges from
27.34 % to 43.48 % for the manage and purchase transaction; for the browse transaction it
is up to 83.37 %.

Comparing the measured mean and median response times shows that the lowest values
are achieved in the 6 CPU core configuration. Even with 4 CPU cores, the browse and
purchase response times are lower than in the 8 CPU core configuration. As the CPU uti-
lization of the investigated configurations is relatively low, the lower performance of the
SUT with 8 CPU cores can be explained by an increased scheduling overhead. Due to
the low CPU utilization, its impact on the overall performance of the SUT is lower than
the impact of other factors such as I/O operations. The response time prediction behaves

127



incorrectly in these cases, as the generated performance model only relies on the CPU de-
mand measured during the data collection step and does not take these effects into account.
However, the simulation of CPU utilization is still very close to the measurements. This
is useful for determining a lower bound of feasible configurations regarding the amount of
cores. Simulating an environment consisting of 3 CPU cores results in a simulated CPU
utilization of 91.96 % and indicates that this would lead to instability of the SUT for the
given workload. This configuration is thus not investigated in this downscaling scenario.

4 Related Work

Running Java EE applications have already been evaluated using performance models by
several authors. Chen et al. [CLGL05] derive mathematical models from measurements
to create product-specific performance profiles for the EJB runtime of a Java EE server.
These models are intended to be used for performance predictions of EJB components run-
ning on different Java EE products. Their approach is thus limited to Java EE applications
that solely consist of this component type.

Liu et al. [LKL01] also focus on EJB components and show how layered queuing networks
can be used for the capacity planning of EJB-based applications. In their work, they model
an EJB-based application manually and describe how an analytical performance model
needs to be calibrated before it can be used for the capacity planning. To improve this
manual process, Mania and Murphy [MM02] proposed a framework to create analytical
performance models for EJB applications automatically. However, the framework was
never evaluated to the best of our knowledge.

The difficulties in building and calibrating performance models for EJB applications man-
ually are also described by McGuiness et al. [MML04]. Instead of using analytical so-
lutions to predict the performance of an EJB-based application, they are using simulation
models. The authors argue that simulation models are better suited for the performance
evaluation of EJB applications due to their flexibility and increased accuracy compared to
analytical models.

The applicability of analytical performance models for Java EE applications with realistic
complexity is analyzed by Kounev and Buchmann [KB03] using the SPECjAppServer2002
industrial benchmark. Kounev extends this work in [Kou06] by using queuing Petri nets to
evaluate the performance of a SPECjAppServer2004 benchmark deployment. The latest
version of the SPECjAppServer benchmark (SPECjEnterprise2010) is used by Brosig and
Kounev in [BHK11] to show that they are able to semi-automatically extract PCM models
for Java EE applications. Their model generation approach is based on data generated by
the monitoring framework of Oracle’s WebLogic product and thus not transferable to other
Java EE server products. It also requires manual effort to distribute the resource demand
based on the service demand law once a model is generated.

The previous work is extended by the approach introduced in this work as it is applicable
for all Java EE server products and can generate performance models for EJB as well as
for web components automatically.

128



5 Conclusion and Future Work

The approach presented in this work aims to make performance modeling better applicable
in practice. The ability to generate performance models at any time simplifies their use
in Java EE development projects, as the effort to create such models is very low. The
evaluation showed that the generated performance models predict the performance of a
system in up- and downscaling scenarios with acceptable accuracy. The approach can thus
support related activities during the capacity planning and management processes.

Future work for this approach includes extending the data collection and model generation
capabilities. First of all, we need to investigate whether the user session information avail-
able in the Java EE runtime can be used to generate usage models automatically. Further
extensions are required to support additional technologies specified under the umbrella
of the Java EE specification, such as JavaServer Faces (JSF) or web services. For this
purpose, the model generation approach also needs to be extended to support distributed
systems. A key challenge for such an extension is the integration and correlation of MBean
data collected from multiple Java EE servers. Additional improvements are required to re-
duce the instrumentation overhead as soon as heap demand needs to be collected.

6 Acknowledgements

The authors would like to thank Jörg Henß, Klaus Krogmann and Philipp Merkle from
the Karlsruhe Institute of Technology (KIT) and FZI Research Center for Information
Technology at KIT for their valuable input and support while implementing the heap rep-
resentation approach in PCM.

References

[BDMIS04] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni. Model-
Based Performance Prediction in Software Development: A Survey. IEEE Transac-
tions on Software Engineering, 30(5):295–310, 2004.

[BHK11] Fabian Brosig, Nikolaus Huber, and Samuel Kounev. Automated Extraction of
Architecture-Level Performance Models of Distributed Component-Based Systems. In
26th IEEE/ACM International Conference On Automated Software Engineering (ASE),
pages 183–192, Oread, Lawrence, Kansas, USA, 2011.

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio component model for
model-driven performance prediction. Journal of Systems and Software, 82(1):3–22,
2009.

[BVD+14] Andreas Brunnert, Christian Vögele, Alexandru Danciu, Matthias Pfaff, Manuel
Mayer, and Helmut Krcmar. Performance Management Work. Business & Information
Systems Engineering, 6(3):177–179, 2014.

129



[BVK13] Andreas Brunnert, Christian Vögele, and Helmut Krcmar. Automatic Performance
Model Generation for Java Enterprise Edition (EE) Applications. In Maria Simon-
etta Balsamo, William J. Knottenbelt, and Andrea Marin, editors, Computer Perfor-
mance Engineering, volume 8168 of Lecture Notes in Computer Science, pages 74–88.
Springer Berlin Heidelberg, 2013.

[BWK14] Andreas Brunnert, Kilian Wischer, and Helmut Krcmar. Using Architecture-Level
Performance Models As Resource Profiles for Enterprise Applications. In Proceedings
of the 10th International ACM Sigsoft Conference on Quality of Software Architectures,
QoSA ’14, pages 53–62, New York, NY, USA, 2014. ACM.

[CLGL05] Shiping Chen, Yan Liu, Ian Gorton, and Anna Liu. Performance Prediction of
Component-based Applications. Journal of Systems and Software, 74(1):35–43, 2005.

[Jai91] Raj Jain. The Art of Computer Systems Performance Analysis. Wiley Computer Pub-
lishing, John Wiley & Sons, Inc., 1991.

[KB03] Samuel Kounev and Alejandro Buchmann. Performance Modeling and Evaluation of
Large-Scale J2EE Applications. In Proceedings of the 29th International Conference of
the Computer Measurement Group on Resource Management and Performance Eval-
uation of Enterprise Computing Systems (CMG), Dallas, Texas, USA, pages 273–283,
2003.

[Kou06] S. Kounev. Performance modeling and evaluation of distributed component-based
systems using queueing petri nets. IEEE Transactions on Software Engineering,
32(7):486–502, 2006.

[Koz10] Heiko Koziolek. Performance evaluation of component-based software systems: A
survey. Performance Evaluation, 67(8):634–658, 2010.

[LKL01] Te-Kai Liu, Santhosh Kumaran, and Zongwei Luo. Layered Queueing Models for En-
terprise JavaBean Applications. In Proceedings of the IEEE International Conference
on Enterprise Distributed Object Computing, pages 174–178, Washington, DC, USA,
2001. IEEE.

[MAL+04] Daniel A. Menascé, Virgilio A. F. Almeida, F. Lawrence, W. Dowdy, and Larry Dowdy.
Performance by Design: Computer Capacity Planning by Example. Prentice Hall,
Upper Saddle River, New Jersey, 2004.

[Mic06] Sun Microsystems. Java Management Extensions (JMX) Specification, vers. 1.4, 2006.

[MM02] D. Mania and J. Murphy. Framework for Predicting the Performance of Component-
Based Systems. In Proceedings of the 10th IEEE International Conference on Soft-
ware, Telecommunications and Computer Networks, Croatia, Italy, 2002.

[MML04] D. McGuinness, L. Murphy, and A. Lee. Issues in Developing a Simulation Model of
an EJB System. In Proceedings of the 30th International Conference of the Computer
Measurement Group (CMG) on Resource Management and Performance Evaluation
of Enterprise Computing Systems, Las Vegas, Nevada, USA, 2004.

[Sha06] Bill Shannon. Java Platform, Enterprise Edition (Java EE) Specification, v5, 2006.

[WW04] Xiuping Wu and Murray Woodside. Performance modeling from software components.
SIGSOFT Softw. Eng. Notes, 29(1):290–301, 2004.

130


