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Abstract: The rising energy demand in data centers and the limited battery lifetime
of mobile devices introduces new challenges for the software engineering commu-
nity. Addressing these challenges requires ways to measure and predict the energy
consumption of software systems. Energy consumption is influenced by the resource
demands of a software system, the hardware on which it is running, and its workload.
Trade-off decisions between performance and energy can occur. To support these de-
cisions, we propose an extension of the meta-model of the Palladio Component Model
(PCM) that allows for energy consumption predictions. Energy consumption is defined
as power demand integrated over time. The PCM meta-model is thus extended with a
power consumption model element in order to predict the power demand of a software
system over time. This paper covers two evaluations for this meta-model extension:
one for a Java-based enterprise application (SPECjEnterprise2010) and another one
for a mobile application (Runtastic). Predictions using an extended PCM meta-model
for two SPECjEnterprise2010 deployments match energy consumption measurements
with an error below 13 %. Energy consumption predictions for a mobile application
match corresponding measurements on the Android operating system with an error of
below 17.2 %.

1 Introduction

Energy efficiency of software systems becomes a growing software engineering challenge
[BVD™14]. Energy consumption of Information and Communication Technology (ICT)
is rising due to higher demand in data centers, networks, and consumer devices like mobile
devices [SNPT09, WBK14]. Therefore, there is need to investigate the energy saving po-
tential of software systems [JGJ T 12]. Today, hardware manufactures increase the capabil-
ities of the hardware and simultaneously increase the energy efficiency. Operating system
(OS) providers implement energy saving modes to increase the energy efficiency of the
overall system. Though, neither optimization on hardware nor on OS level can compen-
sate the rising demand, yet decrease the energy consumption of ICT systems [GJIW12].
Therefore, software optimizations in terms of energy are investigated more recently as
the application software ultimately causes the energy demand on hardware and OS level
[PLL14].
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Performance of software systems and energy efficiency are often referred to as contra-
dicting optimization goals [HSB12]. For example, the response time of an enterprise
application can be decreased by duplicating the number of replicas of the system. By
introducing additional replicas, the energy consumption of the corresponding system is
directly increased. In contrast, enhancing the efficiency of a system in terms of perfor-
mance metrics can also decrease the energy consumption of a system when a components
resource demand decreases. Thus, performance metrics and energy consumption rely on
the same underlying parameters of resource demand and hardware capabilities. This al-
lows us to adapt and extend technologies used for performance evaluation to simulate the
power demand of software systems and therefore predict the energy consumption of such
systems.

Predicting performance metrics like response time, throughput or hardware utilization are
core capabilities of the PCM modeling environment (Palladio-Bench) [BKR09]. This work
proposes an extension of the PCM meta-model called power consumption model and cor-
responding extensions of the Palladio-Bench to take this meta-model extension into ac-
count. The power consumption model describes the power demand of hardware servers
that are simulated. Furthermore, we extend the Palladio-Bench to calculate the software’s
energy consumption based on the resource utilization of the components and the power
consumption model [BKRO09].

This paper starts by introducing the proposed extension of the PCM meta-model including
extensions of the Palladio-Bench for the generation of an energy report. We evaluate this
extension with an enterprise application to demonstrate that this extension is accurate for
data centers and with a mobile application to show the applicability for mobile devices.
This work closes with an outline of related approaches, a summary and future work.

2 Meta-model Extension

The current state of the PCM meta-model cannot predict the energy consumption of a soft-
ware system. To determine the energy consumption, we specify the power consumption of
the hardware resources. A resource’s electrical power consumption depends on its usage,
caused by the resource demand of the software. Hence, knowing the power consumption
P of a certain utilization level of a resource allows to calculate the energy consumption £
over the considered time 7" as presented in equation 1.

T
o / P(t) dt (1)
0

The correlation between resource utilization and energy demand can be approximated for
server systems with a linear model [FWB07, RSRT07]. Simple models, in which only the
CPU utilization is considered for the power consumption calculation can predict it with
high accuracy [RSR*07]. We leverage this correlation and extend the PCM meta-model
with a power consumption model to represent such simple models as introduced in our
previous work [BWK14]. Power consumption models define the power consumption of a
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server as a linear equation using utilization values of the server’s resources as independent
variables [BWK14]. This linear equation calculates the power consumption P,,..q for a
server based on the constant power consumption of a system in idle state Cy and the sum
of the power consumption values of all other resources [BWK14]. The power consumption
of a resource is calculated by multiplying a consumption factor C; with its utilization as
presented in equation 2 [BWK14].

Ppred:CO+ Z Ci*ui (2)

1<i<n

The power consumption calculation based on the utilization of a resource needs to be
modified for some resources used in mobile applications. Power consumption of a screen
depends on the brightness or color intensity. The power consumption of sensors for the
Global Positioning System (GPS) relies on the demanded time of the resource. A constant
factor is not sufficient to calculate the power consumption of such sensors [WBK14]. We
developed a generalized equation 3 to take non-constant values into account. Therefore,
the utilization factor u; can not only represent the utilization of traditional resources but
also represent brightness of a display or other sensor specific behavior such as the accuracy
of a GPS sensor. This utilization factor is multiplied by a function that represents the power
consumption of a resource (P;q;¢;). Depending on the attached resource, the function can
either be a linear or a probabilistic distribution function. Furthermore, we consider the
idle state of a device not as constant, but also as a function (P;4¢,). This accommodates
the fact, that background actives of an Operating System (OS) result in varying power
consumption. The generalized equation is formulated as follows:

Pprea = Piieo + Y Piaei * u; 3)
1<i<n

In PCM, servers and mobile devices are represented as resource containers. The new
power consumption model element is added to the existing resource container meta-model
element. This element contains the power consumption characteristics of a server, a mobile
device or a network adapter and represents the power consumption as outlined in equation
3.

The same formula can be applied to the power consumption of a network adapter. For mo-
bile devices, one of the largest power consumer is the cellular network adapter [WBK14].
The utilization factor u; depends on the throughput of the adapter. A typical mobile de-
vice is linked to three different network adapters: Wi-Fi, Cellular and Bluetooth each with
an independent factor function and an offset function for the power consumption of the
adapter in idle state. Therefore, each linking resource is attached to a power consumption
model representing the factor function that is multiplied with the throughput of the adapter
and offset function for the adapter in idle state for the resource.

To model the power consumption of network adapters and processing resources we extend
the PCM resource meta-model. Figure 1 presents our extensions for the PCM meta-model.
The extension contains a Power Consumption Model and two types of Power Consumption
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Figure 1: Meta-model Extension for predicting Energy Consumption

Components. The central power consumption model contains the offset function repre-
senting the power consumption of the device or linking resource. Furthermore, this model
element contains the device’s battery capacity in milliWatt-hours (mWh) to calculate the
energy consumption of battery depended devices like mobiles and the discharging of its
battery. The result of equation 1 can be subtracted from the battery capacity. This calcula-
tion provides the remaining battery capacity respectively the loading state.

The power consumption model can reference N Power Consumption Components and N
Linking Power Consumption Components, one for each processing resource respectively
one for each linking resource. Each of these components consists of a power consump-
tion factor multiplied with the utilization factor (depending on e.g, utilization, brightness,
throughput, demanded time) during simulation. The factor can be constant or a probabilis-
tic function to simulate varying power consumptions.

Figure 2 shows an example of such a power consumption model element for one server
with 16 Core Processing Units (CPUs) and one Hard Disc Drive (HDD) [BWK14]. We
added a power consumption element to the resource container containing a constant (Cj)
representing the idle power consumption of the server [BWK14]. To represent the power
consumption of the resources CPU and HDD we added two power consumption compo-
nent elements [BWK14]. Each of these processing resources is described with the vari-
ables of equation 2 [BWK14]. A power consumption component contains a factor (C;)
and a reference to the utilization (u;) of the resource [BWK14]. Figure 2, shows a power
consumption model with a constant Cy of 200 Watts (W) for the server in idle state, a
factor Copy of 300 W for the CPU and a factor Cy pp of 50 W for the HDD [BWK14].

In order to model elements like the GPS sensor or display usage in the resource demanding
service effect specifications (RDSEFFs) additional resource types can be added to the
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Figure 2: Power consumption model [BWK14]

resource repository of the PCM meta-model. Two key resources that we found necessary
for this are purpose are DISPLAY and GPS. The resource demand placed on both resources
during a simulation is used for the power consumption calculations depending on a discrete
utilization of either 100 % (on) or 0 % (off).

Calculation of the energy consumption is conducted after the simulation run. We extend
the Palladio-Bench with an energy consumption report. This report is based on the uti-
lization of all resource. After a simulation run, we calculate the power demand for each
resource. We build a sum over all resource-specific power demands of a single resource
container and add the power demand of the resource container itself. The total power de-
mand is integrated over the simulation time as described in equation 1. The result of this
integral is the energy consumption for a single resource container in a PCM resource envi-
ronment model. For constant power demands this can be simplified by just multiplying the
power demand by the simulation time. The result is a report for the energy consumption of
each resource container containing its total power consumption, its total simulation time,
its energy consumption and a simple cost calculation.

3 Evaluation

Two experiments are performed to validate the extensions proposed in this work. We
evaluate the accuracy for server systems by running a SPECjEnterprise2010' benchmark.
For mobile devices we use the sports app Runtastic? and simulate its energy consumption.

'SPECjEnterprise is a trademark of the Standard Performance Evaluation Corp. (SPEC). The official web
site for SPECjEnterprise2010 is located at http://www.spec.org/jEnterprise2010.
ZRuntastic is a trademark of the runtastic GmbH. The official website is located at https://www.runtastic.com/
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Table 1: Evaluation environment [BWK14]

Component AMD-Based Server Intel-Based Server
Base System IBM System X3755M3 | IBM System X3550M3
CPU 4 x AMD Opteron 6172 2 x Intel Xeon E5645
CPU Cores 2x2.1GHz 6x 2.4 GHz
Random Access Memory | 256 GB 96 GB
(0N openSuse 12.2 openSuse 12.3
Application Server 6 x JBoss Application Server 7.1.1
Application SPEC;jEnterprise2010

Database Apache Derby DB version 10.9.1.0

Java Virtual Machine 64 bit Java OpenJDK version 1.7.0

3.1 SPECjEnterprise2010

This section is based on our previous work “Using Architecture-Level Performance Mod-
els as Resource Profiles” [BWK14]. Two power consumption models based on the pre-
sented PCM meta-model extension were generated for the SPECjEnterprise2010 bench-
mark application on an AMD-based server and an Intel-based server [BWK14]. To con-
struct these power consumption models we used an application that conducted a calibration
run on the target hardware as proposed by Economou et al. [ERKRO06]. The run charged
the resources independently from each other with varying intensity. While the resources
were stressed, resource utilization and power consumption values were collected simulta-
neously. To collect the power consumption of the server systems, we used the Intelligent
Platform Management Interface (IPMI3).

After the calibration run, we executed different workloads using varying amounts of users
and conducted a simulation using the power consumption model for both hardware envi-
ronments. We measured and compared the energy consumption and calculated the error of
the simulated energy consumption. The used environment for this evaluation is described
in table 1 [BWK14].

The power consumption of both servers was predicted with an error below 13 %. Table 2
shows the results for the AMD-based server. The load test ran with 1300 - 3500 clients
(C) and caused between 367.55 W and 436.47 W Measured Mean Power Consumption
(MMPC). The Simulated Mean Power Consumption (SMPC) lied within 320.26 W and
390.95 W resulting in a Power Consumption Prediction Error (PCPE) between 10.43 %
and 12.87 %.

Table 3 shows the results for the Intel-based server. Between 1300 and 4300 clients were
used by the load test and caused between 197.05 W and 264.29 W MMPC. The SMPC
lied within 175.94 W and 232.69 W resulting in a PCPE between 10.71 % and 11.96 %.
The power consumption was relatively stable during the steady state of all load levels,
therefore the energy consumption was simply calculated by multiplying the mean power
consumption values by the simulation time [BWK14].

3http://www.intel.com/design/servers/ipmi/
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Table 2: Measured and simulated results for the AMD-based server [BWK14]
C MMPC SMPC PCPE

1300 | 367.55W | 32026 W | 12.87 %
2300 | 403.87 W | 35222 W | 12.79 %
3300 | 433.76 W | 384.52W | 11.35%
3500 | 436.47W | 39095 W | 1043 %

Table 3: Measured and simulated results for the Intel-based server [BWK14]
C MMPC SMPC PCPE

1300 | 197.05W | 17594 W | 10.71 %
2300 | 220.47W | 19493 W | 11.58 %
3300 | 241.67W | 21391 W | 1149 %
4300 | 26429 W | 23269 W | 11.96 %

3.2 Runtastic for Android

A power consumption model for two devices running the Android OS is generated and
used for the evaluation of power consumption models for mobile devices. Power con-
sumption models for mobile devices can either use vendor profiles* provided for the An-
droid OS or stress the resources independently and measure the discharging current. The
discharging current C' multiplied with the battery voltage V' results in the power demand
of a hardware resource P as presented in equation 4 [Leil4].

P=V=xC )

We use a calibration app to stress the resources of the mobile devices as the vendor profiles
accuracy and completeness varied between the devices. The power consumption model is
created after the calibration by running a regression on the measured data. An example
of such a model with a CPU, display and a GPS sensor for a mobile device is presented
in figure 3(c). To calculate the power demand of this device, the utilization of CPU, GPS
and display is considered. To calculate the power demand of the CPU its utilization is
multiplied with a factor of 800 milliWatts (mW). As soon as the GPS sensor is used, a
utilization of 100 % is assumed. The GPS sensor in figure 3(c) therefore consumes 250
mW as soon as it is used. Similarly to the GPS sensor, the display can either be used or
not. To take different brightness or color intensity levels into account, the power demand
is either 300 mW in 50 % of the cases or 420 mW in the other 50 %. To calculate the
power consumption P,..q we use the equation: Pp..q = ((300 * 0.5) + (420 * 0.5)) + 800
*ucpy + 250 * ugps + (450 * 0.4) + (520 * 06)) *uprspray. A CPU utilization of
60 % and a utilization of the GPS and Display of 100 % would thus lead to a predicted
power consumption P of 1582 mW. According to equation 1 we build the integral for the
predicted power consumption P with the time 7" of the simulation to determine the energy

“https://source.android.com/devices/tech/power.html
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Figure 3: Power Consumption Example for Mobile

consumption F of the system [BWK14]. The battery capacity of the modeled devices is
3.200 mWh. A constant use of the display and GPS sensor while the CPU is active at 60
% utilization would therefore reduce the battery capacity by about 50 % per hour.

The example in figure 3(a) and 3(b) shows a representation of a simplified sports tracking
application in PCM that tracks the position via GPS, displays a map and calculates the
running distance. Display and GPS are accessible as processing resource. Display and
GPS run concurrent to the calculations representing three different threads: A thread for
the user interface, one thread for the location tracking and one thread for calculating the
distance.

We used Runtastic for Android for this evaluation as this application uses a broad number
of resource types. We predicted and measured the power consumption of a 30-minute-
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Table 4: Measured and simulated results for Runtastic Android application [Leil4]
Device MMPC SMPC PCPE | BLPE
Samsung Galaxy Tab | 1.251 W | 1.084 W | 13.35% | 0.67 %
LG Google Nexus 5 | 0.883 W | 0.732 W | 17.12% | 1.01 %

long Runtastic run on a Samsung Galaxy Tab and a LG Google Nexus 5. The Nexus
device runs Android 4.4.4 and the Galaxy Tab has Android 4.3 installed. The evaluation
run was conducted with both devices simultaneously. Additionally, both devices were
connected to the same network carrier in order to reduce power-relevant variables (e.g,
different signal strengths). During the run we collected hardware utilizations data with
the Qualcomm Trepn-Profiler’. The utilization data is used to build a simple PCM usage,
system, repository and allocation model. The repository model was constructed similar to
the one shown in figure 3(a) and 3(b) and thus, simply represents the distribution of re-
source demands placed by the Runtastic application on mobile device hardware. We chose
this approach as we did not have access to the source code or debugging interface of the
Runtastic application. The usage model contains only one user starting and tracking a run.
The power consumption during the run was logged for comparing it with the simulation.
We conducted two simulations for the two devices. Both simulations used the same PCM
repository model only with different resource environment models and therefore differ-
ent power consumption models. Afterwards, we calculated the error between the power
consumption prediction and the power consumption measured during the run [Leil4].

Table 4 shows the results for the mobile devices. The application causes between 1.251
W and 0.883 W MMPC. The SMPC lies within 1.084 W and 0.732 W resulting in a
PCPE between 13.35 % and 17.12 %. The accuracy quality decreases for lower power
consumptions. For a 30-minutes run we predicted the battery level of the device with an
Battery Level Prediction Error (BLPE) of 0.7 % to 1 % [Leil4].

4 Related Work

This chapter outlines related approaches that measure, compare or predict the energy con-
sumption of software systems.

Capra et al. [CFFG10] compared the energy consumption of customer relationship man-
agement (CRM) and database management systems (DBMS). The energy efficiency sig-
nificantly varied between the compared systems when processing the same workload.
They reasoned that energy efficiency should be considered when buying or developing
software. The extension for the PCM meta-model proposed in our work takes energy
efficiency into account as a key quality metric of a software system.

Jwo et al. [JWH™11] proposed to calculate the energy consumption of an enterprise ap-
plication by multiplying the time a transaction is processed by mean power consumption

Shttps://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler
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of the host. The consumption therefore relies on the workload but still depends on the
deployment environment and can therefore not convey a general energy efficiency met-
ric. The extension in our work proposes a similar concept but based on resource demand
values instead of response time values.

Johann et al. [JDNK12] proposed energy efficiency measurement methods for software
systems. They define energy efficiency as the ratio of "useful” work relative to the energy
required to process it. The calculation is based on single methods or components and is
evaluated during the development process. They conclude that this method supports the
creation of energy efficient applications.

Honig et al. [HEKSP11] suggest a model-based approach for energy-aware software de-
velopment for mobile applications. The energy consumption is based on vendor profiles
provided by Android device manufactures. The accuracy of these models varies between
different manufactures and devices but provides a baseline for the energy consumption
calculation. Vendor profiles can be used to create resource environment models including
power consumption models for the extension presented in our work.

Josefiok et al. [JSW*13] compared power measurements on different Android devices and
OS versions. They discovered that the measurements and the Application Programming
Interfaces (API) for monitoring the power consumption differ between manufactures and
OS versions. They propose an energy abstraction layer to handle the multitude of APIs
and granularity levels. Such a generalized API would help to create resource environment
models including power consumption models and therefore predict the energy consump-
tion of mobile applications on a broader scale.

These different approaches show the growing importance of evaluating energy consump-
tion of software systems. Better measurements can help developers to decrease the energy
consumption of their systems and increase the overall efficiency. Comparisons help users
to choose the software with the best energy efficiency, which can also lead to lower oper-
ations costs. Energy consumption prediction capabilities can help to estimate the energy
consumption and subsequently efficiency of a system without owning the target environ-
ment.

5 Conclusion

This work proposed a PCM meta-model extension to predict the energy consumption of
software systems. This extension has been validated for server and mobile systems, for
different hardware environments and workloads. The results show that the power con-
sumption of these systems can be predicted with an error below 17.2 %. The evaluation
used the SPECjEnterprise2010 benchmark for server systems and the sports tracking ap-
plication Runtastic for mobile devices. The extension allows to specify the power con-
sumption of hardware resources relative to their utilization. Two additional processing
resource types have been added to the meta-model to represent mobile applications.

Constructing and analyzing energy efficient software is becoming an important research
area for the software engineering community. The extension proposed in this work allows
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predicting energy consumption of an application and to predict battery life of a device
running a mobile application. The model extensions help developers to understand the
varying power demands of different devices and to optimize applications in order to save
battery power and reduce profiling effort [WBK14]. PCM meta-model instances for mo-
bile devices are created manually and with a limited number of resources. The calibration
application for mobile devices used in this work can create the power consumption model
automatically but lacks the means to automatically generate performance models. Such
model generators are already available for enterprise applications [BVK13, BHK11]. A
future challenge in this research area is to create accurate models for mobile applications
automatically.
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