
Proc. SOSP 2014, Nov. 26–28, 2014, Stuttgart, Germany
Copyright c© 2014 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

Approaching the Cloud: Using Palladio for Scalability,
Elasticity, and Efficiency Analyses∗†

Sebastian Lehrig
Software Engineering Chair

Chemnitz University of Technology
Straße der Nationen 62

09107 Chemnitz, Germany
sebastian.lehrig@informatik.tu-chemnitz.de

Matthias Becker
Heinz Nixdorf Institute
University of Paderborn

Zukunftsmeile 1
33102 Paderborn, Germany

matthias.becker@upb.de

Abstract: In cloud computing, software architects develop systems for virtually un-
limited resources that cloud providers account on a pay-per-use basis. Elasticity man-
agement systems provision these resource autonomously to deal with changing work-
loads. Such changing workloads call for new objective metrics allowing architects to
quantify quality properties like scalability, elasticity, and efficiency, e.g., for software
design analysis. However, analysis approaches such as Palladio so far did not support
these novel metrics, thus rendering such analyzes inefficient.

To tackle this problem, we (1) extended Palladio’s simulation approach SimuLizar
by additional metrics for scalability, elasticity, and efficiency and (2) integrated the Ar-
chitectural Template language into Palladio allowing architects to model cloud com-
puting environments efficiently. A novel analysis process guides software architects
through these new capabilities. In this paper, we focus on illustrating this new process
by analyzing a simple, self-adaptive system.

1 Introduction

In cloud computing, software architects develop applications on top of compute environ-
ments being offered by cloud providers. For these applications, the amount of offered
resources is virtually unlimited while elasticity management systems provision resources
autonomously to deal with changing workloads. Furthermore, providers bill provisioned
resources on a per-use basis [AFG+10]. As a consequence of these characteristics, archi-
tects want their applications to use as few resources as possible in order to save money
while still maintaining the quality requirements of the system. Quality properties that
focus directly on these aspects are scalability, elasticity, and efficiency [BLB15, HKR13].

These quality properties need to be quantified for requirements engineering and software
design analysis by means of suitable metrics. For instance, cloud consumers and cloud
∗The research leading to these results has received funding from the EU Seventh Framework Programme

(FP7/2007-2013) under grant no 317704 (CloudScale).
†This work was partially supported by the German Research Foundation (DFG) within the Collaborative

Research Centre “On-The-Fly Computing” (SFB 901).

141

providers need to negotiate service level objectives (SLOs), i.e., metrics and associated
thresholds [EMP13]. Such SLOs have to consider characteristics like changing work-
loads (“how fast can an application adapt to a higher workload?”) and pay-per-use pricing
(“how expensive is serving an additional consumer?”). However, architecture-level anal-
ysis approaches so far did not support these novel metrics. Therefore, software architects
currently cannot efficiently analyze their designs at the architectural level and potentially
have to implement and try all reasonable design variants for making informed design de-
cisions. Such an approach leads to high effort and high development costs in the end.

In related work, design-time engineering methods for analyzing performance properties
exist. These approaches currently have a limited support for scalability, elasticity, and
efficiency analyses. Scalability analyses (e.g., Palladio [BKR09]) are semi-automated, i.e.,
based on a series of manually conducted and interpreted performance analyses. Elasticity
analyses (e.g., Palladio’s simulation approach SimuLizar [BBM13]) allow to model and
analyze self-adaptations, typically used by cloud computing environments, but have a high
modeling effort. Efficiency analyses (e.g., CDOSim [FFH12]) require an implemented
SaaS application to determine the most cost-efficient cloud computing environment but
are limited to IaaS environments and lack support for early design-time analyses.

To tackle these problems, we (1) extended SimuLizar [BBM13] by additional metrics for
scalability, elasticity, and efficiency and (2) integrated the Architectural Template lan-
guage [Leh13] into Palladio allowing architects to model cloud computing environments
efficiently. A novel analysis process guides software architects through these new capabil-
ities.

The contribution of this paper is a tool-based illustration of this new process. For our
illustration, we analyze a simple, self-adaptive system.

This paper is structured as follows. We introduce the simple, self-adaptive system we use
as a running example in Sec. 2. In Sec. 3, we overview our novel process for analyzing
cloud computing systems regarding scalability, elasticity, and efficiency. Afterwards, we
illustrate this process and accompanying tools by applying our running example to this
process (Sec. 4). We conclude the paper with a summary and an outlook on future work in
Sec. 5.

2 Running Example: A Simplified Online Book Shop

As an example scenario, we consider a simplified online book shop. An enterprise assigns
a software architect to design this shop, given the following requirements:

Rfct: Functionality In the shop, customers shall be able to browse and order books.
Rscale: Scalability The enterprise expects an initial customer arrival rate of 100 cus-

tomers per minute. It further expects that this rate will grow by 12% in the first
year, i.e., increase to 112 customers per minute. In the long run, the shop shall
therefore be able to handle this increased load without violating other requirements.

Relast: Elasticity The enterprise expects that the context for the book shop repeatedly

142

changes over time. For example, it expects that books sell better around Christmas
while they sell worse around the holiday season in summer. Therefore, the sys-
tem shall proactively adapt to anticipated changes of the context, i.e., maintain a
response time of 3 seconds or less as well as possible. For non-anticipated changes
of the context, e.g., peak workloads, the system shall re-establish a response time of
3 seconds or less within 10 minutes once a requirement violation is detected.

Reff : Efficiency The costs for operating the book shop shall only increase (decrease) by
$0.01 per hour when the number of customers concurrently using the shop increases
(decreases) by 1. In other words, the marginal cost of the enterprise for serving an
additional customer shall be $0.01.

Requirements Rscale, Relast, and Reff are typical reasons to operate a system in an elas-
tic cloud computing environment [HKR13], i.e., an environment that autonomously provi-
sions the required amount of resources to cope with contextual changes. Thus, the software
architect designs the shop as a 3-layer Software as a Service (SaaS) application operating
in a rented Infrastructure as a Service (IaaS) cloud computing environment that provides
replicable virtual servers (see Fig. 1). The three layers involve the typical layers of web
applications: presentation, application, and data layer.

Data Layer«Stateless»

Application Layer
Presentation Layer

SaaS
Environ-

ment

IaaS
Environ-

ment

Book
Management

Book Database

(Replicable) Virtual Servers/Tiers

Enterprise /
IaaS Consumer

IaaS Provider

SLOs

Book Shop
Frontend

...

Figure 1: Overview of the simplified online book shop.

The architect investigates possible variants of the 3-layer architectural style. First, the ar-
chitect considers a 3-layer/3-tier architecture [TMD09]. In a 3-layer/3-tier architecture,
the three layers of a 3-layer architecture (presentation, application, and data) are allocated
to three different tiers. In an elastic IaaS environment, these tiers are represented by differ-
ent replicable virtual servers. Second, the architect considers the SPOSAD architectural
style [Koz11], a 3-layer variant with an application layer that can safely be replicated to
foster scalability. The SaaS middle layer has to be stateless to achieve this safe replication.

Now, the software architect would like to know whether the planned online shop should
be realized according to (a) a 3-layer/3-tier architecture, (b) the SPOSAD architectural
style, or (c) neither of the two. The architect wants to decide based on whether the scala-
bility (Rscale), elasticity (Relast), and efficiency (Reff) requirements will be met by the

143

finally implemented application. In other words, the architect would like to conduct an
architecture-level what-if analysis for the available options to make an informed decision.

However, as current analysis tools do not support metrics for scalability, elasticity, and
efficiency in the context of cloud computing. Therefore, the architect cannot efficiently
analyze the book shop at the architectural level and, therefore, potentially has to implement
and try all considered variants (leading to high effort and high costs).

3 Process

In this section, we propose a novel high-level process for modeling and analyzing cloud
computing based systems. Our process supports architects in conducting architecture-level
analyses for scalability, elasticity, and efficiency. Moreover, we integrated a set of anal-
ysis tools into our process for making such analyzes highly efficient: Palladio [BKR09],
Architectural Templates [Leh13], and SimuLizar [BBM13].

Architectural Templates and SimuLizar are extensions to the Palladio tool suite. Archi-
tectural Templates (ATs) are a mean to express architectural blueprint that architects can
efficiently use and refined for a broad range of software systems. ATs can be specified
and reused for various architectural styles, like “3-layer/3-tier” and “SPOSAD”, and can
be analyzed with SimuLizar. SimuLizar provides modeling capabilities for self-adaptive
systems, i.e., different views for a system and its reconfiguration, as well as a simulation-
based scalability-, elasticity-, and efficiency-analysis.

Specify SLOs &
 (Dynamic) Usage Scenarios

Select
 Template

Refine System Models &
Reconfiguration Models

Simulate Interpret

[SLOs not fulfilled]

Figure 2: High-level process for applying Palladio in cloud computing scenarios.

Figure 2 illustrates our high-level process. The process starts with specifying service-level
objectives (SLOs) and (dynamic) usage scenarios that both formalize the requirements of
the system to be developed (e.g., the ones of our example scenario in Sec. 2). Next, the
software architect has to select an appropriate Architectural Template. The Architectural
Template has then to be further refined by application-specific parts, i.e, interfaces, com-
ponents, and service effect specifications have to model the target systems structure and
behavior. Reconfiguration rules, defined by the Architectural Template, can optionally be
refined as well. To validate whether the SLOs for the target system are met, the system
can be simulated with SimuLizar. The result of the simulation is a set of measurements for
different metrics as defined in [BLB15]. The software architect has now to interpret these
measurements and check whether the modeled target system fulfills the SLOs. If not, the
process continues with the first step to incrementally refine the SLOs and the system until
SLOs can be met.

144

4 Application

In this section, we apply the book shop scenario of Sec. 2 to our novel process as described
in Sec. 3. This application serves as a first proof-of-concept evaluation. We describe each
process step in a separate subsection.

4.1 Specify SLOs & (Dynamic) Usage Scenarios

Based on the requirements of the book shop scenario, we derive and specify SLOs and
(dynamic) usage scenarios.

For the specification of SLOs, we use a dedicated SLO language of our tool suite. Our
language allows to organize SLO specifications in repositories as shown in Fig. 3. For
example, we derived a “3 Seconds Response Time SLO” based on Relast where the re-
quirement is checked against a threshold of three seconds. Our SLO of Fig. 3 makes this
threshold explicit as can be seen within the properties view. The simulation can later-on
make use of such information.

Figure 3: Example SLO specification as derived from Relast.

For the specification of dynamic usage scenarios, we integrated LIMBO [vKHK14], a tool
for load intensity modeling, into our tool suite. Before our integration, usage scenarios had
to be specified in a static manner, i.e., could not vary over time. Therefore, scenarios like
we described for the book shop scenario could not be realized, e.g., to vary load around
Christmas. Because LIMBO allows to model such time-dependent changes in workloads,
we extended our simulation such that LIMBO’s dynamic changes in workloads can be
applied on Palladio’s usage scenarios.

For example, we modeled a change of arrival rates over one year for the book shop scenario
as shown in Fig. 4. The arrival rates generally increase from 100 users per second to 112
users per second as that is the expected trend for one year. We additionally modeled a
peak around Christmas as well as lower arrival rates around the holiday season in summer.
Finally, we added some noise to reflect a realistic use of web applications. Our extended
simulation later-on follows this specification for the arrival rate.

145

Figure 4: Example LIMBO specification as derived from Rscale and Relast.

4.2 Select Template

The template-based design process starts with selecting an Architectural Template (AT)
from a repository of available ATs. We created such a repository for the CloudScale
project1.

The architect of the book shop scenario directly models the system in two variants, as
a 3-layer/3-tier architecture and as a SPOSAD architecture. For each variant, the archi-
tect selects an appropriate AT from the repository. As an example, the AT specification
for SPOSAD is illustrated in Fig. 5. This AT specifies the different roles of SPOSAD
(SPOSAD itself; presentation, middle, data layers) and a completion. The latter is a trans-
formation able to weave application-independent SPOSAD information into the model
of the book shop. For example, the replication logic in the form of adaptation rules is
application-independent and can, thus, be included in the completion of the AT. ATs partic-
ularly provide the means to parametrize such completions, e.g., by the concrete condition
when replication shall be triggered.

Having decided to choose a particular AT for system design, architects can apply that AT
to their system. In Fig. 6, we illustrate such an application for the SPOSAD AT. The
figure shows the PCM Profiles view; a special view for listing applications of Palladio’s
profile mechanism. Each AT role can be applied via this mechanisms, thus, allowing the
architect to assign the different AT roles to the corresponding entities. Accordingly, he has
top assign the SPOSAD role to the system itself and each layer role to the corresponding
component assembly within the system. Creating and refining such component assemblies
is the task of the next process step.

1The repository is available at github.com/CloudScale-Project; the process to engineer ATs is
described by Lehrig [Leh13].

146

Figure 5: Example AT for SPOSAD. The AT includes a role for the system and three roles for
assigning the layers of a 3-layer architecture to component assemblies. The SPOSAD completion
weaves application-independent SPOSAD information into the model.

Figure 6: Example application of the SPOSAD AT. Each AT role is assigned to corresponding
PCM entities using its profile mechanisms. The middle layer assembly profile allows for specifying
response time thresholds and intervals for triggering self-adaptations. In the example, response time
is averaged in intervals of 10 seconds and checked against a 3 seconds threshold.

147

4.3 Refine System Models & Reconfiguration Models

Now that the software architect has configured two system models to make use of ATs (3-
layer/3-tier AT and SPOSAD AT), the architect has to assign all AT roles to application-
dependent component assemblies. For the presentation and data layer, the architect can
assemble the same repository components for both design variants. The two variants, 3-
layer/3-tier AT and SPOSAD AT, do not constrain such components differently. For the
application layer, the architect has to assemble a stateless variant of the book management
component to the system if following the SPOSAD AT. Here, the architect has to follow
the constraints of the SPOSAD architectural style. For the case of the 3-layer/3-tier AT,
no such constraints limit the design of the book management component. Both variants,
stateless and statefull, are allowed here.

Fig. 7 illustrates the system model as designed by the architect. The system model is simi-
lar for both variants; only the encapsulating component of the book management assembly
may be different as explained above. Having these assemblies available, the architect can
assign the remaining AT roles to these. This assignment is shown in Fig. 6 (note the three
profile applications for each layer).

For the application layer of the SPOSAD AT, the architect has an additional option to
parametrize the adaptation rules used for replication. As illustrated in Fig. 6 (bottom,
right), the application layer profile provides tagged values for specifying replication thresh-
old and observation intervals.

Figure 7: The system model of the book shop scenario

148

4.4 Simulate

For our simulation, we reimplemented and improved the Experiment Automation frame-
work, initially developed by Merkle [Mer11]. Experiment Automation is now able to start
several SimuLizar [BBM13] simulations, each time varying model parameters in order to
measure our novel metrics. For instance, we measure user capacity (prerequisite for our
scalability range metric, cf. [BLB15]) by varying the number of users within the system
over several simulation runs. For details about Experiment Automation, we refer to our
developer guide2.

We configured an appropriate Experiment Automation model for the book shop scenario.
Our model references SimuLizar as simulation tool, due to its self-adaptation capabilities.

4.5 Interpret

In this section, we exemplify some first new metric measurements that are now supported.
Implementing the full range of our proposed metrics (and even more) is part of our future
work.

In Fig. 8, we illustrate a result for our user capacity metric (scalability metric). For the
book shop implemented as 3-layer/3-tier variant, we observe a user capacity of 30. There-
fore, if more than 30 users reside within the system, SLOs (and corresponding require-
ments) are violated.

The architect of the book shop investigates the root causes for this insufficient user capac-
ity; a higher number was expected. By investigating the CPU utilization of the application

2Quality Analysis Lab (QuAL): Software Design Description and Developer Guide - Version 0.2:
https://svnserver.informatik.kit.edu/i43/svn/code/QualityAnalysisLab/
Documentation/trunk/org.palladiosimulator.qual.docs/QualityAnalysisLab.pdf
(User: anonymous; Password: anonymous; Visited on 31/10/2014).

Figure 8: User capacity is 30 for the book shop scenario implemented as 3-layer/3-tier variant

149

Figure 9: SLO violations over time for the book shop scenario implemented as SPOSAD variant

tier, the architect figures out that the application layer component overloads the CPU. Be-
cause the demands to the CPU are realistically modeled, the architect decides to apply the
SPOSAD variant instead (SPOSAD ensures a scalable application layer).

The architect figures out that the capacity of the new system is around 500, which seems to
be fine. However, by investigating the measurements for our “SLO violations over time”
elasticity metric (Fig. 9), the architect observes that there are too many SLO violations
throughout the year.

The software architect now suspects that the database is the new bottle neck resource. The
architect therefore remodels the system with a faster HDD on the data tier and reexecutes
the simulation. Now, no SLOs are violated anymore. Eventually, the architect therefore
suggests to implement the book shop following the SPOSAD architectural style and with
a fast HDD for the data tier. The architect additionally provides the 1-year operation costs
for this variant based on dedicated cost metrics that our simulation now supports.

5 Conclusions

In this paper, we show how we integrated novel metrics for quality properties of cloud
computing systems into Palladio, accompanied by a novel process and a more efficient
modeling language. Following our process, we where able to efficiently analyze a first,
simple example regarding scalability, elasticity, and efficiency.

Our new process and tool suite helps software architects in efficiently analyzing applica-
tions that shall operate within cloud computing environments. For scientists, our tools
are especially interesting because their capabilities for scalability, elasticity, and efficiency
analysis open a plethora of new possibilities for engineering systems.

In future work, we plan to further improve the usability of our tools because several editors

150

are in early-stage development. Afterwards, we want to evaluate these tools and our pro-
cess with more extensive examples. We also plan to optimize our analysis by building up
on already gained measurements and only analyzing changed/additional parts of system
models (scalability, elasticity, and efficiency analysis composition).

References

[AFG+10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy
Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia.
A view of cloud computing. Commun. ACM, 53(4):50–58, April 2010.

[BBM13] Matthias Becker, Steffen Becker, and Joachim Meyer. SimuLizar: Design-Time Mod-
elling and Performance Analysis of Self-Adaptive Systems. In Proceedings of Software
Engineering 2013 (SE2013), Aachen, 2013.

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio component model for
model-driven performance prediction. Journal of Systems and Software, 82(1), January
2009.

[BLB15] Matthias Becker, Sebastian Lehrig, and Steffen Becker. Systematically Deriving Quality
Metrics for Cloud Computing Systems. In Proceedings of the 6th ACM/SPEC Interna-
tional Conference on Performance Engineering, ICPE ’15, New York, NY, USA, 2015.
ACM. Accepted for publication.

[EMP13] Thomas Erl, Zaigham Mahmood, and Ricardo Puttini. Cloud Computing: Concepts,
Technology & Architecture. Prentice Hall, 2013.

[FFH12] Florian Fittkau, Sören Frey, and Wilhelm Hasselbring. CDOSim: Simulating Cloud
Deployment Options for Software Migration Support. In MESOCA ’12, page 3746,
2012.

[HKR13] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity: What it is, and
What it is Not. In Proceedings of the 10th International Conference on Autonomic
Computing (ICAC 2013), San Jose, CA, June 24–28, 2013.

[Koz11] Heiko Koziolek. The SPOSAD Architectural Style for Multi-tenant Software Applica-
tions. In Proc. 9th Working IEEE/IFIP Conf. on Software Architecture, pages 320–327.
IEEE, July 2011.

[Leh13] Sebastian Lehrig. Architectural Templates: Engineering Scalable SaaS Applications
Based on Architectural Styles. In Proceedings of the MODELS 2013 Doctoral Sympo-
sium co-located with the 16th International ACM/IEEE Conference on Model Driven
Engineering Languages and Systems (MODELS 2013), volume 1071, pages 48–55, Mi-
ami, USA, 2013. CEUR-WS.org.

[Mer11] Philipp Merkle. Comparing Process- and Event-oriented Software Performance Simu-
lation. Master’s thesis, Karlsruhe Institute of Technology (KIT), Germany, 2011.

[TMD09] R.N. Taylor, N. Medvidovic, and E. Dashofy. Software Architecture: Foundations, The-
ory, and Practice. Wiley, 2009.

[vKHK14] Jóakim Gunnarson von Kistowski, Nikolas Roman Herbst, and Samuel Kounev.
LIMBO: A Tool For Modeling Variable Load Intensities. In Proceedings of the 5th
ACM/SPEC International Conference on Performance Engineering (ICPE 2014), ICPE
’14, pages 225–226, New York, NY, USA, March 2014. ACM.

151

