Is the PCM Ready for ACTORs and Multicore CPUs?—A Use

Case-based Evaluation

Markus Frank
markus.frank@informatik.uni-stuttgart.de
Uni Stuttgart, Stuttgart, DE

Abstract

Multicore CPUs have been common for years. How-
ever, developing parallel software is still an issue. To
ease the development, software developers can use a
range of frameworks and approaches, e.g., OpenMP,
MPI or ACTOR. These approaches have an enormous
impact on the performance of the software. Thus,
Software Performance Engineering (SPE) needs to
consider the impact of the parallelization approaches
to deliver reliable results. In this paper, we evalu-
ate the capability of the Palladio Component Model
(PCM) based on the use case of a bank transaction
example with a realization following the ACTOR ap-
proach. We observed that the accuracy of the per-
formance predictions is unsatisfying, the modeling is
challenging, and the characteristics of the ACTOR ap-
proach cannot be modeled. In future we need to con-
sider additional attributes or properties to enrich the
PCM as well to include concepts like active resources,
message passing, and automatization concepts.

1 Introduction

Developing software that can be executed in paral-
lel is challenging. In the past couple of years, new
approaches like ACTOR or shared memory program-
ming became popular. These approaches have in com-
mon that they abstract the parallelization to a level
that is easy to use and enables the software developer
to focus on the actual problem instead of handling low
level parallelization challenges. Example challenges
are synchronization, dead locks, life locks and so on.
Based on the performance impact of the paralleliza-
tion approaches, SPE can no longer ignore their effect
or abstract them as implementation details. In order
to continue to deliver reliable performance predictions
SPE needs to consider such approaches in their per-
formance prediction models.

In previous work [2] we performed a experiment
that evaluated the capabilities of a state of the art
performance prediction tool based on a matrix mul-
tiplication use case and shard memory approach re-
alized by the OpenMP freamwork. We were able to
show that the accuracy of the prediction decreases,
once the number of used CPU cores increases.

Thttp://www.palladio-simulator.com/

Stefan Staude and Marcus Hilbrich
name.lastnameQinformatik.tu-chemnitz.de
TU Chemnitz, Chemnitz, DE

In this paper, we extend the knowledge about mod-
eling and performance prediction by evaluating an ad-
ditional use case based on the ACTORs approach.
When we talk about the ACTORSs approach, we mean
the ACTORs model and not a concert implementa-
tion. Thereby, we identified limitations during mod-
eling the use case and also regarding the accuracy of
the performance prediction results. On the modeling
side, it was not possible to represent the ACTOR prin-
ciple in the model. This results in a high abstraction
and a lot of manual modeling overhead. In the fu-
ture, we need active resources, message passing mech-
anisms, and enhanced tool support for the ACTOR
approach. On the performance prediction side, we
could show that the accuracy of the predictions drop
to 40 %. Here we need to consider additional metrics
in the prediction models like thread numbers, cache
sizes, and memory hierarchies.

To present our results in a structured way, we first
present the experiment setup (Sec. 2). Followed by
the description of the conduction (Sec. 3), where a de-
scription of the implementation and modeling is given.
In the last part, we discuss the obstacles we had to
overcome and evaluate the capabilities of current tools
to predict the performance of the ACTOR approach
on multicore systems. We finish with lessons learned
(Sec. 5) and an outlook (Sec. 6).

2 Experiment Setup

Research Questions: Based on the use case we
answer, whether the PCM is suited for modeling a
ACTOR. Therefore, we investigate the following re-
search questions: (Q1) Is it possible to model a paral-
lel system following the ACTORS approach with the
PCM? (Q2) How accurate are the simulated predic-
tions compared to the real execution?

Use Case Description: One of the most com-
mon use cases for ACTORs is a bank transaction sys-
tem. This scenario considers a bank with multiple
accounts, where each account has a balance and be-
longs to a customer, is considers. The customers issue
transactions to transfer money. Each of the transac-
tions needs a source account, a target account, as well
as an amount of money to be transferred. All transac-
tions must be logged and we assume that all balances


http://www.palladio-simulator.com/

Measurement Results

Worker Ordered Set Randomized Set
Threads Time* Speedup Time* Speedup
1 33.61s 1.00 33.88s 1.00
2 14.63 s 2.30 15.99 s 2.12
4 721s 4.66 7.48 s 4.53
8 4.23 s 7.94 6.01s 5.63
16 3.67s 9.16 5.89 s 5.75

*mean execution time over all runs

Table 1: Measurement summary for both input sets

must be positive. Thus, transactions can also fail.

Hardware: All calculations are performed on
the same hardware characterized by 2 CPUs with
20 M B cache each and features like Hyper-Threading
disabled. FEach CPU contains 8 physical cores, at
2.4GHz. We used Ubuntu 16.04.1 as operating sys-
tem. Also, all measurements and simulations are con-
ducted for 1, 2, 4, 8 and 16 worker threads.

3 Conduction

To evaluate the prediction capabilities of the PCM,
we first implement the use case and measure it. In
the next step, we model it. We use the initial sequen-
tial measurements to calibrate the model (all models,
measurements, and source code are available in our
repository?). The following elaborates on the steps:

Implementation: Link [1] already discussed how
to implement the use case. We decided for an imple-
mentation according to Link, where each account is
represented by an actor and transactions are handled
by the source account sending a message to the target
account. We issue a transaction, by sending a message
from the experiment handler to the source account.
An additional management actor is not used. The
ACTOR approach is realized using the Akka Toolkit
implementation 3.

Measurement: To analyze e.g., cache-based ef-
fects, two sets of input data are created. Both sets
hold the same transections but in different order. The
ordered data set performs all transaction of one source
account after another, while the random data set uses
a randomized order.

Each data sets holds two million transactions and
uses five thousand accounts. For each number of used
worker threads (1, 2, 4, 8, and 16), each data set is
measured multiple times. We measured the time to
perform all transactions of a set. Individual transac-
tions are not measured to avoid measurement over-
head. Based on multiple measurements, the average
time is determined and presented in Tab. 1.

Model: The straightforward approach is to model
each actor of the implementation with a deployed
component in PCM. Manually deploy five thousand

®https://gitlab.hrz.tu-chemnitz.de/
staus--tu-chemnitz.de/ssp_actors
Shttp://akka.io/

Simulation Results

Worker Ordered Set Randomized Set
Threads Time* Accuracy Time* Accuracy
1 33.22 s 0.99 33.22 0.98
2 16.71 s 0.88 16.71 s 0.96
4 8.41s 0.86 8.41s 0.89
8 4.25 s 1.00 4.25 s 0.70
16 2.18 s 0.59 2.18 s 0.37

*model-based response time prediction

Table 2: Simulation result summary

components wastes to much manpower and it was not
clear how to handle the transactions. Thus, we de-
cided to model all transactions as one component,
called Transactions. The usage model calls the
services of the component to perform transactions.
Based on the behavior description of Transactions
(the SEFF) it is statistically decided whether the
transaction fails or not. Afterwards, the correspond-
ing resource demands for the transactions are utilized.
The probability that a transaction fails and the re-
source demands are calibrated based on the sequen-
tially executed implementation.

To realize the parallel implementation models, the
Transactions component is duplicated (according to
the number of worker threads from 1 to 16). Also, an
additional component (ExperimentHandler) is intro-
duced. The ExperimentHandler distributes requests
from the usage model and uses a Fork action to re-
strict the number of parallel processed transactions
to the number of worker threads. By that, a message
queue, that is not directly present in PCM, is mod-
eled. Finally, the exact Linux O(1) scheduler [4] was
used and the number of the CPU replicas has to be
adjusted according to the number of available cores.

As result, the ACTOR concept based on actors and
transactions more or less vanished in the model.

Simulation: According to the measurements, we
run simulations for 1 to 16 worker threads. Based on
the fact, that the order of the input sets cannot be
modeled, the input sets are abstracted by one usage
model, considering only the number of transactions.

Finally, all combinations of data sets and number
of worker threads are simulated by using SimuCom.
The results are shown by Tab. 2.

4 Evaluation

In the following we answer the research questions:
Evaluation of Q;: Characteristic for the ACTOR
approach is the “everything is an actor” principle.
Realizing this approach in the PCM would mean to
model every ACTOR by hand, which is a impossi-
ble task for our use case, considering that we have
more than thousand actors. Further, the ACTOR ap-
proach is based on message passing, which is currently
not supported by the PCM. To still use the PCM we
had to abstract all of the ACTORs characteristics.


https://gitlab.hrz.tu-chemnitz.de/staus--tu-chemnitz.de/ssp_actors
https://gitlab.hrz.tu-chemnitz.de/staus--tu-chemnitz.de/ssp_actors
http://akka.io/

15 1| —=— Ordered
—eo— Randomized
—— Predicti
% 10 1 reaiction
S}
&
o
5 1
12 4 8 16

Worker Threads

Figure 1: Speedup diagram based on the Measure-
ments from the ordered and randomized input sets
and the predicted speedup

We thus deem it is impossible to model the ACTOR
approach within the PCM.

Evaluation of (J5: Fig. 1 shows the speedup in
relation to the number of used worker threads. As Sec.
3 mentioned, the execution of our implementation re-
sults in differing execution times depending on the in-
put sets and therefore in a different speedup. Further,
the figure shows the predicted speedup, which differs
more with an increasing number of worker threads.
An interesting observation is the achieved super-linear
speedup up to 4 threads and the worse scalability
starting from around 8 threads. We assume the rea-
sons for the intense difference between the two sets
can be found in the provoked caching behavior of the
ordered set.

As Fig. 1 shows, the accuracy of the predictions
drops with the number of used threads. This can be
seen by comparing the measurement lines to the pre-
diction line. Therefor we deduce, that the PCM is
missing value metrics and prediction models to esti-
mate the correct response time. These metrics are
cache size, memory hierarchies, synchronization over-
head produced by the ACTOR’s framework. In total,
we can say that the predictions are off by 63% in
the worst and by 41 % in the best case for 16 worker
threads. That means, that the PCM is not suited
to predict the performance of a system realizing the
ACTOR approach.

5 Lessons Learned

Finally, we share the lessons we learned during the
experiment in a brief and summarized way:

Dynamic threads: The ACTOR approach ab-
stract the parallelization and hides the complexity
from the software developer. Therefore, the developer
has no influence of the threads created and thus the
CPU cores uses. This is decided dynamically based
on the available resources. Accordingly features to
support dynamic thread allocation on model level are
wishful but currently not supported.

Message Parsing: ACTORs use asynchronous
message passing to communicate. This principle is

not supported by the PCM. Active resources and pa-
rameterized events are required.

Manual Modeling: To represent the ACTORs,
we would have had to model more than thousand ac-
tors by hand. This would have been an error prone
and time-consuming task. Therefore, tool support is
necessary to automatize the creation process.

Abstraction: We had to abstract the model to a
degree, that it lost all the ACTOR specific character-
istics. This task was not trivial and requested a lot of
experience and manpower.

Individual Model: The presented model is only
valid for the ACTOR approach. Other approaches
(i.e., OpenMP) result in completely different models.

Caching: By using different input sets, we could
provoke caching effects. These effects are not consid-
ered by the PCM.

6 Outlook

It is clear that the PCM needs to be extended to
be ACTOR aware and aware of parallelization ap-
proaches on CPU level in general. To avoid creation
of separate models for each number of worker threads
and to reduce the needed effort of modeling. There-
fore, the concept of Architectural Templets (AT) in-
troduced by Lehrig [3], can be extended with addi-
tional ATs for parallel processing. This is currently
under development. To respect physically shared re-
sources like caches, that restrict the parallel efficiency,
we will introduce according passive, shared resources
to PCM. For first experiments, we discuss to reuse
network resources and completions. Additionally, we
identify a demand for active resources in PCM. Such
resources are needed to model input queues, asyn-
chronous communications, and event triggers.

All in all, the PCM and the performance prediction
need to be extended to ensure to deliver accurate and
useful results in future.

References
[1] J. Link. “Paradigmen fiir Nebenldufigkeit:
Transaktionaler Speicher und Un-

veranderlichkeit”. In: JavaSPEKTRUM (2010).

[2] M. Frank and M. Hilbrich. “Performance Pre-
diction for Multicore Environments—An Experi-
ment Report”. In: Proceedings of the Symposium
on Software Performance 2016, 7-9 November
2016, Kiel, Germany. 2016.

[3] S. Lehrig, M. Hilbrich, and S. Becker. “The ar-
chitectural template method: templating archi-
tectural knowledge to efficiently conduct quality-

of-service analyses”. In: Software: Practice and
FEzperience (2017). spe.2517.

[4] J. Happe. “Predicting software performance in
symmetric multi-core and multiprocessor envi-
ronments”. PhD thesis. Karlsruhe: Zugl.: Olden-
burg, Univ., Diss., 2008.



	Introduction
	Experiment Setup
	Conduction
	Evaluation
	Lessons Learned
	Outlook

