Performance Cockpit
From measurements to models

Jens Happe
Dennis Westermann

SAP Research

Palladio Days, November 2010
Challenges of Software Performance Analysis

- Complex systems
- Performance models are hard to create

➔ How to combine measurements and models?
Outline

Software Performance Curves

Example

Integration into the PCM
Software Performance Curves

- Performance Measurements
- Statistical Inference
- Software Performance Curves
This would help us to...

Efficiently address various performance questions:

- Integrate
 - low-level details into architectural models
 - legacy components into prediction models

- Evaluate design alternatives

- Capacity planning

- Identification of performance bugs
Software Performance Cockpit

Admin

Performance Analyst

System Adapter

Analysis Adapter

System, Benchmark, and Application Expert

Analysis Expert

SUT

Systematic Definition of Experiments

Multiple Analysis Techniques

Reuse in Multiple Settings

Jens Happe - Integration of Performance Curves into the PCM
Example
Message-oriented Middleware

Classical Software Performance Engineering (SPE) requires detailed knowledge about the system’s internal structure...

Active MQ 5.3

Increasing message size?
Larger number of messages?
Delivery time?
Performance Cockpit
An Engineering Approach to Software Performance Curves

Admin

Performance Analyst

Delivery Time

Messages

Message Size

System Adapter

Analysis Adapter

ActiveMQ

Linux

MARS

Genetic Optimization

System, Benchmark, and Application Expert

SUT

Analysis Expert

SPECjms2007

Regression
Performance Cockpit
Configuration

Resource Environment
Measurement Specification
Analysis Specification
Export Specification

platform:/resource/MoM/MoM.configuration
- Performance Evaluation Configuration
 - Resource Environment [1. Load Driver, 2. Load Driver, System Under Test]
 - System Node 1. Load Driver (satID: loaddriver1)
 - System Node 2. Load Driver (satID: loaddriver2)
 - System Node System Under Test (satID: sut)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapter Descriptors</td>
<td>Adapter Descriptor Linux 2.6 Adapter, Adapter Descriptor Active MQ Adapter</td>
</tr>
<tr>
<td>Hostname</td>
<td>10.55.145.192</td>
</tr>
<tr>
<td>Id</td>
<td>_OOPCAPHLe5---9aZlWy1zg</td>
</tr>
<tr>
<td>Name</td>
<td>System Under Test</td>
</tr>
<tr>
<td>Port</td>
<td>1099</td>
</tr>
<tr>
<td>Satellite ID</td>
<td>sut</td>
</tr>
</tbody>
</table>
Performance Cockpit
Configuration

Resource Environment

Measurement Specification

Analysis Specification

Export Specification

- Adapter Repository
 - Adapter Descriptor Active MQ Adapter
 - Adapter Descriptor Linux 2.6 Adapter
 - Adapter Descriptor JMS Load Driver
 - Observation Parameter Delivery Time [ms]
 - Configuration Parameter Group
 - Configuration Parameter Arrival Rate [msg/s]
 - Configuration Parameter Message Size [kByte]
Performance Cockpit

Configuration

Integration of Performance Curves into the PCM

Resource Environment

Measurement Specification

- Experiment Series: Message Size vs. Arrival Rate (Arrival Rate [msg/s], Message Size [kByte] -> Delivery Time [ms])
 - Full Exploration Strategy
 - Experiment Run Configuration ([,] [120 min])
 - Linear Double Variation Arrival Rate [msg/s] (min, max, step: 1.0, 600.0, 50.0)
 - Linear Double Variation Message Size [kByte] (min, max, step: 0.0, 800.0, 100.0)

Analysis Specification

Export Specification

Task Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>600.0</td>
</tr>
<tr>
<td>Min</td>
<td>1.0</td>
</tr>
<tr>
<td>Step</td>
<td>50.0</td>
</tr>
<tr>
<td>Varied Parameter</td>
<td>Configuration Parameter Arrival Rate [msg/s]</td>
</tr>
</tbody>
</table>

© SAP AG 2010. All rights reserved.
Performance Cockpit

Configuration

Resource Environment
Measurement Specification
Analysis Specification
Export Specification

Analysis Specification

MARS MessageSize-vs-ArrivalRate

Many To One Dependency (Message Size [kByte], Arrival Rate [msg / s] --> Delivery Time [ms])

<table>
<thead>
<tr>
<th>Selection</th>
<th>Parent</th>
<th>List</th>
<th>Tree</th>
<th>Table</th>
<th>Tree with Columns</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Parameter</td>
<td>Observation Parameter Delivery Time [ms]</td>
</tr>
<tr>
<td>Experiment Series</td>
<td>Experiment SeriesMessageSize-vs-ArrivalRate (Arrival Rate [msg / s], Message Size [kByte] --> Delivery Time [ms])</td>
</tr>
<tr>
<td>Independent Parameters</td>
<td>Configuration Parameter Message Size [kByte], Configuration Parameter Arrival Rate [msg / s]</td>
</tr>
</tbody>
</table>
Performance Cockpit

Configuration

- **Resource Environment**
- **Measurement Specification**
- **Analysis Specification**
- **Export Specification**

Export Specification

- Report: How do message size and arrival rate influence the delivery time?
 - Plot3DGraph (-:, -)
 - Plottable Experiment Result Measurements

Platform: /resource/MoM/MoM.adapterrepoistory

Selection: Parent | List | Tree | Table | Tree with Columns

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>Expand</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>File Name</td>
<td>MessageSize-vs-ArrivalRate.png</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>Input Parameters</td>
<td>Configuration Parameter Arrival Rate [msg/s], Configuration Parameter Message Size [kByte]</td>
<td></td>
</tr>
<tr>
<td>Ltheta</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>MessageSize vs ArrivalRate</td>
<td></td>
</tr>
<tr>
<td>Name Not Given</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Parameter</td>
<td>Observation Parameter Delivery Time [ms]</td>
<td></td>
</tr>
<tr>
<td>Phi</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Point Size</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Theta</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>800</td>
<td></td>
</tr>
</tbody>
</table>
Example

Message-oriented Middleware

Experiment Series Controller

- System Controller
 - LoadDriver

- System Controller
 - LoadDriver

- System Controller

Message-oriented Middleware

Benchmark

Performance Cockpit

System under Test
Example
Message-oriented Middleware

Integration with model-based performance prediction?
Integration into the PCM

Scenarios

Completions

Composition
Integration into the PCM

Integration Points

How to integrate Performance Curves into the PCM?
Integration into the PCM
Integration Points

Variant A: Component

- SEFFs are not sufficient (queue length)
 → new type of components

- Performance Curves do (currently) not load resources
 Risk of wrong prediction results

- Performance Curves do not allow calls to external services
Integration into the PCM

Integration Points

Variant B: Resource

- Resources support queue lengths
 → new type of resource

- Performance Curves require complex interfaces that are not supported by resources
Variant C: QoS Annotation of System Required Roles

- No allocation to resources required
- No further required interfaces possible
- Complex interfaces can be supported

- Specific code generation for simulation necessary (queue length)
Integration into the PCM

Schematic Overview

Model Simulation

System Simulation Code

Performance Curve Adapter

Performance Curve Interpreter

<<QoSAnnotation>>

generated

implemented
Integration into the PCM

Meta-Model
Integration into the PCM

Simple Evaluation: A Performance Curve that simulates PS

Use Processor Sharing

Use Performance Curve

Measured Time
Integration into the PCM
Challenges & Ideas

- Validation with real case study (MOM)

- Extensions
 - Generation of load on resources
 - Evaluation and modelling of contention effects

- Ideas
 - Performance Curve Component with required roles
Current Work
Software Performance Cockpit

Integration into the PCM [Alexander Wert]

Core Architecture & Meta-Model [Chris Heupel]

Performance Analyst

Smart Measurements [Rouven Krebs]

UI Rendering Times [Yusuf Dogan]

Analysis Expert

Parameter Screening [Pascal Meier]

System, Benchmark, and Application Expert

SUT

System Adapter

Analysis Adapter

Admin

© SAP AG 2010. All rights reserved.
Summary

Jens Happe - Integration of Performance Curves into the PCM

Software Performance Curves

Software Performance Cockpit

Message-oriented Middleware

Integration into the PCM
Publications 2010

Vision and Idea:

Application:

