PCM & Runtime Adaptation
Motivation

Elastic System Design: How to model it?
Modelling…?

- How do we represent the system, i.e., what is its meta-model?
 - Design-Time Structure: Types, potential connectors, potential deployments, …
 - Initial State: Initial component instances, connectors, deployment
 - Runtime State: Current configuration, component instances, actual deployments, *environment sensor data*

- How do we model the system changes?
 One solution: graph transformation systems (GTS)

- How do we check properties of these systems?
 One solution: graph-based model checking
Views and Viewpoints

- When defining a new modelling language
 - define viewpoint
 - and views

- Viewpoint
 - Modelled system aspect
 - Set of views for a specific purpose

- Views
 - Model system parts with specific focus
 - Defines notation and filter criteria
Views and Viewpoints

Static Viewpoint

• Potential component structure, types
• Monitoring probe locations

Adaptation Viewpoint

• Initial state view
• Adaptation rules view
System Type View + Monitoring Specification

- **LoadBalancerNode**
 - Load Balancer
 - <<monitoring>> ArrivalRate
- **ServerNode[i]**
 - Server[i]
 - i:1..*
- **Utilisation[i]**
- **Utilisation[i]**
 - <<leastUtil>>
Initial State View

- **Ibn:** LoadBalancerNode
 - **Ib:** Load Balancer

- **Sn[1]:** ServerNode[i]
 - **S[1]:** Server[i]
Adaptation View

\[\exists i: \text{Utilisation}[i] > \text{ut} \]

<<condition>>

<<timing>>

\[\text{clock} < 10 \text{s} \]
Adaptation Views

- Adaptation views are graph transformations
 - transform the Model@Runtime
 - span a graph language together with the initial state graph
- Special formalisms and tools exist
 - GTS
 - Story Charts (GTS with control flow)
 - Timed Story Charts
 - Prob. Timed Story Charts
- State space checker
Self-Healing Rules – Possible Parts

Context (matching the runtime model)

Trigger Condition (often refers to the monitoring model)

Context

<<assumption>>
Application Delay = 1 sec

Corrective Action (updating runtime model and system)

<<expected>>
Utilisation_CPU < 50%
Deadline = 10 sec

Assumption in the “nothing changes” case
Control Loop

- Apply Matching Graphreplacement
- Update Monitoring
- Predict Change Impact
- Apply Matching Graphreplacement

[Trigger Formula violated]

[not ok] / rollback

[ok] / rollback

S. Becker, Modelling CB Systems @ Runtime
Conclusion

Adaptive systems need new (architectural?) viewtypes

Static views is extended by additional information
- Cardinalities
- Connector types
- Monitoring locations

Adaptation views are a kind of graph grammar
- In-place model transformations, i.e., GTS
- Initial state

Future work
- Use such models to implement, predict, model-check (?), and manage systems at run-time