Applying the Palladio tool in a SOA Project

Andreas Brunnert¹, Daniel Tertilt¹, Christian Vögele¹, Helmut Krcmar²

Performance & Virtualization Group
Information Systems Division

¹. fortiss GmbH - An-Institut Technische Universität München
². Chair for Information Systems - Technische Universität München
Agenda

- Introduction
- Project Context
- PCM Use Cases
- Conclusion
- Outlook
Agenda

• Introduction
 • Project Context
 • PCM Use Cases
• Conclusion
• Outlook
Introduction

- An-Institut Technische Universität München
- Application-oriented research institute
- Industry collaboration to improve the applicability of research results in practice

- Performance analysis and prediction
- Performance Management Work
- Focus on complex enterprise applications
Agenda

• Introduction
• **Project Context**
 – Goals
 – Technology
 – Performance Challenges
 – Performance Evaluation Approaches
 – Model Driven Development Process
• PCM Use Cases
• Conclusion
• Outlook
Project Context

Goals

• Current IT landscape
Project Context

Goals

• Target IT landscape
Project Context

Technology

• Oracle WebLogic Application Server 11g
• Oracle Application Development Framework (ADF)
 – JavaServer Faces (JSF) based web-applications using Enterprise Java Beans (EJB)
• Oracle Service-oriented Architecture (SOA) Suite
 – Service Component Architecture (SCA)-based web-service components
 – Sometimes plain web-service implementations
 • Facades in front of legacy systems
• Oracle Service Bus (OSB)
 – Enterprise Service Bus
Project Context

Performance Challenges

• Estimating resource requirements and response times for:
 – User interfaces
 – Enterprise Service Bus (ESB)
 – Web services

• How to handle the dynamic workload?
 – ~13,400 concurrent users of the system between 9 and 12 am during weekdays – otherwise much lower load

• Further challenges:
 – Maximum CPU utilization in production 40%
 – SAML authentication performance
 – Web service operation granularity (ESB roundtrip overhead)
Project Context

Performance Evaluation Approaches

• Load Tests:
 – Evaluate response times and resource utilization for running components

• Performance models:
 – Evaluate the expected response times for the new applications based on monitoring data for existing web services
 – Evaluate architectural changes (e.g. with or without ESB)
 – Capture data about workloads, resource demands and response times
 – Support the sizing process for the new infrastructure-components (especially in the UI-Layer and for the web services)
Project Context
Model Driven Development Process

- Process Representations by the field specialists
- Combining Process and IT Views (e.g. dependency from processes to services)
- Navigation Rules for the UI
- Performance Models

Diagram:
- ARIS - EPC
 - manual transformation
 - MID Innovator
 - automated transformation
 - Oracle ADF Task Flows
 - (semi-)automated transformation
 - PCM
Agenda

• Introduction
• Project Context
• **PCM Use Cases**
 – Data Store
 – Use Case Modeling
 – Software Performance Curves
 – Resource Estimation
• Conclusion
• Outlook
PCM Use Cases

Data Store

• PCM models offer a good way to store performance data in a structured form
 – reuse performance data gathered during the software engineering process
 – The ability to make use of this data by simulating the environment motivates people to invest time in it

- Propabilities for user interactions
- Resource demands for specific components
- Response times for different web service operations
PCM Use Cases

Use Case Modeling

- PCM usage models are used to discuss probabilities for using certain functionalities with the users of the system
 - PCM repository models are generated based on ADF Task Flows
 - Probabilities represented in these usage models are used to support the creation of load test scripts as well
PCM Use Cases

Software Performance Curves

• The web services are facades in front of existing legacy systems:
 – No access to the backend (legacy) systems
 – No possibility to install monitoring functionalities

• Introduced in PCM by Alexander Wert, Jens Happe, Dennis Westermann
PCM Use Cases

Resource Estimation

- UI layer is a Java EE web application based on the Oracle Application Development Framework (ADF)
 - JSF, Servlets, JSPs, EJBs, Web services
 - Extract components, component relationships and resource demands from a running Java EE application (different approach than Brosig et al. 2009, 2011)

User Interface (Oracle ADF web applications)

- Components (Java EE-predefined):
 - Servlets, Java Server Pages (JSP), Enterprise Java Beans (EJB)
- Component Relationships
- Components Resource Demand
Agenda

- Introduction
- Project Context
- PCM Use Cases

- Conclusion
 - What works?
 - What does not work?
 - What can be improved? aka feature wishlist ;-)

- Outlook
Conclusion

What works?

• PCM allows to create performance models that are easily comprehensible by technical staff in an organisation
 – Thanks to the UML alignment and the different views on the system

• PCM models allow to store performance related information that often will not be documented otherwise

• User behaviour modeling in usage models

• SimuCom works reliable once the model has been established

• Evaluating design alternatives
Conclusion

What does not work?

• Creating repository models and their associated RDSEFFS requires a lot of effort
 – Hard to capture the resource demands for the different components
 • … it is mostly a technical and an organizational challenge to get the required data
 • … sometimes the effort to get the data for PCM is higher than the benefit

• Representing memory would be beneficial especially for sizing Java EE environments

• Some workflow cases can not be properly represented in PCM usage models

• Simulation result visualizations are difficult to use for discussions with non-PCM experts
Conclusion

What can be improved? aka feature wishlist ;-)

- **RDSEFF and Usage Model Editors** need some enhancements in terms of:
 - Representing branches within branches within branches…
 - Integrating capabilities to stop complete flows on certain conditions (like return to caller)
 - Referencing usage models from usage models (as of today we’re using SEFFs)
- **Often the PCM results do not contain data for all sensors**
 - specific RDSEFF results are missing
- **It would be great to have a downloadable Windows 64bit version**
 - The tool seems to be much more stable and faster on MacOS
- **Better migration support for existing models**
 - Apart from Anne Koziorek’s migration script (e.g. for diagrams as well)
Agenda

• Introduction
• Project Context
• PCM Use Cases
• Conclusion
• Outlook
Outlook

What are we working on?

• Better visualization of the simulation results, e.g.:
 – Generate graphs that are easily comprehendable by non-palladio specialists
 • Instead of exporting results into CSV files and doing it in Excel…
 • Remove ramp up times

• Automated PCM-model creation:
 – From ADF Task Flows for early design cycle discussions
 • Capturing user behaviour
 – From running Java EE applications for resource estimation in later cycles
 • Representing application components and their resource demands
Thanks for your attention!

Questions?
Contact

Andreas Brunnert, M.Sc.
fortiss GmbH – An-Institut Technische Universität München
Guerickestr. 25 | 80805 München | Deutschland
Tel. +49 89 360 35 22 - 44 | Fax +49 89 360 35 2250
brunnert@fortiss.org | www.fortiss.org

Dipl.-Inf. Daniel Tertilt
fortiss GmbH – An-Institut Technische Universität München
Guerickestr. 25 | 80805 München | Deutschland
Tel. +49 89 360 35 22 - 18 | Fax +49 89 360 35 2250
tertilt@fortiss.org | www.fortiss.org

Christian Vögele, M.Sc.
fortiss GmbH – An-Institut Technische Universität München
Guerickestr. 25 | 80805 München | Deutschland
Tel. +49 89 360 35 22 - 18 | Fax +49 89 360 35 2250
voegele@fortiss.org | www.fortiss.org

Prof. Dr. Helmut Krcmar
Technische Universität München - Lehrstuhl für Wirtschaftsinformatik
Boltzmannstraße 3 | 85748 Garching b. München | Deutschland
Tel. +49 89 289 – 195 32
krcmar@in.tum.de | www.winfobase.de