
Proc. SOSP 2014, Nov. 26–28, 2014, Stuttgart, Germany
Copyright c© 2014 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

Using and Extending LIMBO for Descriptive Modeling of
Arrival Behaviors

Jóakim v. Kistowski, Nikolas Herbst, Samuel Kounev

Chair for Computer Science II, Software Engineering
University of Würzburg

joakim.kistowski@uni-wuerzburg.de
nikolas.herbst@uni-wuerzburg.de
samuel.kounev@uni-wuerzburg.de

Abstract: LIMBO is a tool for the creation of load profiles with variable intensity
over time both from scratch and from existing data. Primarily, LIMBO’s intended use
is the description of load arrival behaviours in open workloads. Specifically, LIMBO
can be employed for the creation of custom request or user arrival time-stamps or for
the re-parameterization of existing traces.

LIMBO bases on the Descartes Load Intensity Model (DLIM) for the formalized
description of its load intensity profiles. The DLIM formalism can be understood as
a structure for piece-wise defined and combined mathematical functions. We outline
DLIM and its elements and demonstrate its integration within LIMBO.

LIMBO is capable of generating request or user arrival time stamps from DLIM
instances. In a next step, these generated time-stamps can be used for both open work-
load based benchmarking and simulations. The TimestampTimer plug-in for JMeter
already allows the former. LIMBO also offers a range of tools for easy load intensity
modeling and analysis, including, but not limited to, a visual decomposition of load
intensity time-series into seasonal and trend parts, a simplified load intensity model as
part of a model creation wizard, and an automated model instance extractor.

As part of our LIMBO tutorial, we explain these features in detail. We demonstrate
common use cases for LIMBO and show how they are supported. We also focus on
LIMBOs extensible architecture and discuss how to use LIMBO as part of another
tool-chain.

1 Introduction

Today’s cloud and web-based IT services need to handle huge amounts of concurrent users.
Customers access services independently of one another and expect reliable quality-of-
service under highly variable and dynamic load intensities. In this context, any knowledge
about a service’s load intensity profile is becoming a crucial information for managing the
underlying IT resource landscape. Load profiles with large amounts of concurrent users
are typically strongly influenced by human habits, trends, and events. This includes strong
deterministic factors such as time of the day, day of the week, common working hours and
planned events.

131

Common benchmarking frameworks such as Faban1, Rain [BLY+10], and JMeter [Hal08]
allow job injection rates to be configured either to constant values, stepwise increasing
rates (e.g., for stress tests), or rates based on recorded workload traces. The tool we present
in this document aims at closing the gap between highly dynamic load intensity profiles
observed in real life and the current lack of support for flexible handling of variable load
intensities in benchmarking frameworks.

In [vKHK14b], we introduce two modeling formalisms at different abstraction levels: At
the lower abstraction level, the Descartes Load Intensity Model (DLIM) offers a structured
and accessible way of describing the load intensity over time by editing and combining
mathematical functions. The high-level DLIM (hl-DLIM) allows the description of load
variations using few defined parameters that characterize the seasonal patterns, trends, as
well as bursts and noise elements. An example load profile consisting out of a seasonal
part, a trend and bursts is presented in Fig. 1.

Figure 1: Example profile with a seasonal pattern, trend, and bursts.

In this document, we present LIMBO2 [vKHK14a] - an Eclipse-based tool for handling
and instantiating load intensity models based on DLIM. LIMBO offers an accessible way
of editing DLIM instances and extracting them from existing traces. It also supports using
hl-DLIM parameters for easy creation of new DLIM instances through a model creation
wizard. In addition, we provide the TimestampTimer plugin for JMeter [Hal08], which en-
ables the use of LIMBO-generated time stamps for the definition of JMeter work unit start
times. We also provide extensive documentation for LIMBO on our website2, including
a thorough tutorial. In this document, we provide a description of the LIMBO tool and
its architecture. We demonstrate LIMBO’s extensibility and its use as part of other code
projects.

1Faban http://faban.org
2LIMBO http://go.uni-wuerzburg.de/limbo

132

2 Definition of Load Intensity

In the context of LIMBO, load intensity is a discrete function describing arrival rates of
workload units (e.g. users, sessions or requests) over time. We assume that the work units
are of a homogeneous type and define the arrival rate r(t) at time t as follows:

r(t) = R′(t)
with R(t) = |{ut0 |t0 ≤ t}|

where R(t) is the amount of all work units ut0 , with their respective arrival time t0, that
have arrived up until time t.

3 Use-Cases for LIMBO

LIMBO can be used in many contexts, some of which might not be directly apparent. The
following sections describe a few use-case scenarios in which the ability to create and
modify a load intensity model is extremely helpful. This is intended to also demonstrate
the usefulness of load intensity modeling in general and to give the reader a few additional
ideas on what to do with LIMBO.

3.1 Core Use-Cases

LIMBO was created with the specific goal of being used as part of the following use cases:

• Creation of artificial load intensity profiles for specific benchmarking purposes

• Extraction of existing load intensity profiles from pre-existing traces.

LIMBO features an extensible architecture, which allows LIMBO’s application beyond
these core use cases, e.g.:

1. Creating artificial Load Intensity Profiles for Benchmarking
A model describing the load intensity variations over time can be used to create
request or user arrival time-stamps that can then be used to define the beginning time
of a unit of work within a benchmarking framework. This enables a user to use a
multitude of different varying workloads, which in turn helps with the benchmarking
of system properties that deal with such variations (such as elasticity) [WHGK14].

This use-case describes the possibility of a custom created load intensity profile, that
has been specifically designed to help with the benchmarking of such a property. Of
course, this load intensity profile may be subject to additional requirements, such as
representability.

133

2. Creating a Load Intensity Model Instance from an existing Trace
A model instance can be used to describe a past real-world load profile (within a
certain error). This opens up a number of sub-use-cases:

• Parametrization of Request / User Arrival Traces
Among others, Zakay et al. [ZF13] sample request traces for benchmark work-
load generation. When doing so several problems can arise. The trace might
be taken from a system that is magnitudes larger than the test system on which
the benchmark is to be executed. The trace might also have been taken over
a long time period and has to be temporally compressed for the benchmark.
When using a load intensity model instead of a simple trace, these problems
become easily manageable. They can be managed either by modifying the
model instance directly, or through parametrization of the request time-stamp
generation.

• Anonymization of Request / User Arrival Traces
Request traces of real cloud or web based systems often include additional
information that may contain information about the system’s users. Even the
exact time-stamps themselves may still provide a reader of the trace with the
ability to extract information about the behavior of single users.
An abstract load variation representation helps to minimize this problem. Sys-
tem providers, who are concerned about customer anonymity, might be more
likely to provide usage information for research purposes in an abstract form
as made possible by a load intensity model.

3.2 Additional Use-Cases

These additional use-cases are either derived from the two previous cases or constitute new
approaches to LIMBO’s Load Intensity Model. They describe more complex scenarios, in
which the features provided by LIMBO can play a central part.

1. Load Intensity Forecasting
A model instance that has been derived from the incoming request trace of a cur-
rently running system can be used to predict future request intensity variations. Do-
ing so can also help with the detection of unplanned events that deviate from an
extrapolated periodic model. Such a forecasting mechanism could be deployed on
cloud systems. In that context it would help to improve dynamic resource manage-
ment, by increasing the efficiency of elastic resource re-allocation.

2. Anomaly Detection
A calibrated load intensity model instance could serve as a baseline allowing the
computation of anomaly metrics. This approach incorporating DLIM model in-
stances as baseline will most presumably end up with a higher anomaly detection

134

accuracy and less false positives [Bie12]. Such a baseline can also be used in other
fields of computer science, since it can always be used for comparison against
anomalies. In a security context, it might be used for finding access patterns that
deviate from usual access patterns in the form of their load intensity as part of an
intrusion detection benchmark as proposed in [MK12].

4 LIMBO

LIMBO allows editing of load intensity models based on DLIM and supports guided model
creation using the parameters defined in hl-DLIM.

4.1 Models

• Descartes Load Intensity Model: DLIM describes request arrival rates over time
and offers a way to define a piece-wise mathematical function for the approximation
of variable arrival rates with support for (partial) periodicity, flexibility and compos-
ability.

• High-level DLIM: hl-DLIM offers abstracted knowledge about load intensity vari-
ations modeled through a limited number of workload parameters. Inspired by the
time series decomposition approach in BFAST [VHNC10], a hl-DLIM instance de-
scribes a Seasonal and Trend part. Additionally, it features a Burst and Noise part.

4.2 Features

LIMBO offers a significant number of different features, all targeted at enabling easy and
comprehensive creation and modification of load intensity profiles. LIMBO has been im-
plemented using an extensible architecture. It is thus open for extension with additional
features. At this time, LIMBO’s major features are:

1. Creation of new load intensity profiles using hl-DLIM: LIMBO enables the use
of hl-DLIM parameters for easy creation of new DLIM instances through a model
creation wizard.

2. Modification of DLIM load profiles: LIMBO allows for modification of DLIM
load profiles, by adding, removing, and modifying the piece-wise mathematical
functions of which these profiles are composed.

3. Visualization of load profiles: LIMBO includes a graphical view for the display
of DLIM instances. This view also contains a more detailed visualization feature,
which decomposes DLIM instances into their seasonal parts, trends, and bursts. It
then displays each part’s contribution towards the total load intensity.

135

4. Timestamp generation: Load intensity profiles can be used to generate request or
user arrival time stamps. These time stamps can be used as input for common bench-
marking frameworks, such as JMeter [Hal08]. LIMBO’s extensible architecture also
allows for easy addition of additional time-stamp exporters for other benchmarking
frameworks, such as FinCos [MBM13].

5. Timestamp use for load generation: We provide the TimestampTimer plugin for
JMeter. This plugin allows the use of LIMBO-generated time-stamps for the defini-
tion of work unit start times.

6. Model instance extraction: DLIM instances can be extracted from existing arrival
rate traces using one of the implemented model instance extractors:

• Simple DLIM Extraction Process (s-DLIM): An accurate extraction process,
which extracts DLIM instances from existing arrival rate traces. Our evalua-
tion of s-DLIM accuracy in [vK14] shows a median extraction error of 12.4%.
Comparison with BFAST[VHNC10] also shows, that s-DLIM provides excel-
lent performance, with all extractions completing in less than 0.2 seconds and
providing an average speedup of 8354 compared to BFAST decomposition.

• Periodic DLIM Extraction Process (p-DLIM): A less accurate extraction pro-
cess to extract DLIM instances from existing arrival rate traces. Other than
s-DLIM, p-DLIM instances are intended to be repeated for load intensity fore-
casting.

• high-level DLIM Extraction Process: Extracts hl-DLIM instances from exist-
ing arrival rate traces.

LIMBO’s extensible architecture allows furhter model extraction and calibration
methods to be integraded, as well as for reading other file formats, such as trace files
as exported by Kieker [vHWH12].

4.3 Implementation

LIMBO, the tooling for DLIM and hl-DLIM models, is realized as a plug-in for the Eclipse
IDE. It provides an editor for the creation and modification of model instances, as well as
additional utilities for using the created models. Using DLIM’s EMF-generated code base
as a basis, the following features have been implemented:

• Model Evaluation: Support for the DLIM function output calculation and manual
refinement of model instances.

• Modeling Process Assistance: Includes an automated process for the creation and
extraction of DLIM instances. Additionally, LIMBO provides a model instantiation
guidance by means of a wizard.

• Utilities: Additional functionality is provided for existing DLIM instances. Includ-
ing functionality for the generation of arrival rate series from a time-stamp series,

136

and a tool that calculates the difference between an arrival rate trace and a model
instance.

LIMBO consists of five individual plug-ins as visualized in Fig. 2. Note that all pack-
ages and plug-ins begin with the prefix ”tools.descartes.dlim”. For better readability
”tools.descartes” is omitted for the remainder of this paper.

dlim.exporter

dlim.extractor

dlim.editor

dlim.edit

dlim.generator

Figure 2: LIMBO architecture.

1. DLIM Generator The dlim.generator plug-in contains the DLIM element inter-
faces and implementations, as well as their default utilities (e.g., for validation). It
also contains model evaluation tools, as well as arrival rate and time-stamp series
generators. It features two extension points:

• Exporter extension points supports custom implementations by implementing
the dlim.exporter.IDlimExporter interface. Default exporters are contained in
the dlim.exporter plug-in.
• Extractor extension point allows the addition of extractors for deriving a

model instance from an existing trace. Extractors must implement dlim.reader.
IDlimArrivalRateReader for their trace parser and dlim.extractor.IDlimExtrac-
tor for the model instance creator. Default extractors are contained in the
dlim.extractor plug-in.

The dlim.generator plug-in also provides LIMBO’s core functionalities for use as
part of other projects. The most important provided packages are:

• dlim: This package contains the model element interfaces. It is generated by
the EMF genmodel, but has been modified to return a CustomDlimFactoryImpl
Instance for the DlimFactory.eINSTANCE, instead of the generated DlimFac-
toryImpl.

• dlim.generator: This package contains the model evaluation logic, primarily
used for arrival rate and time-stamp series generation. The ModelEvaluator
class, specifically, is the primary access point to all model evaluation logic. It
is instantiated using the model’s root element (which is always a Sequence)
and a seed for the random number generator (for Noise evaluation). It pro-
vides the getArrivalRateAtTime(double rootTime) method, which returns
the model’s resulting arrival rate for a given time.

137

• dlim.exporter.utils
This package contains utilities that help when implementing a new exporter.
The use of these utilities is highly recommended.

– ArrivalRateGenerator: Provides functionality to sample a list of arrival
rates from a DLIM instance, represented by its dlim.generator.Model-
Evaluator.

– TimeStampWriter: Provides functionality to generate a list of request
time stamps using a list of arrival rates (as is provided by ArrivalRate-
Generator.

• dlim.reader
This package contains classes and interfaces responsible for the parsing of time
series.

– ArrivalRateReader: Provides functionality to read arrival rates from an
arrival rate file. Can read either a single arrival rate at a given time, or
returns a list of all ArrivalRateTuples contained in the file.

– IDlimArrivalRateReader: Interface for an arrival rate reader. Must be
implemented by a reader for the Extractor extension point.

– DefaultArrivalRateReader: A default implementation of IDlimArrival-
RateReader. Is able to read arrival rate files of the same format as pro-
duced by the arrival rate file exporter.

– RequestTimeSeriesReader: Provides functionality to parse a request
time-stamp trace into an file containing the arrival rates per second for
each second.

2. DLIM Generator Edit
This plug-in contains the providers used by the editor, which provide display specific
information, such as the display images and labels of model elements.

3. DLIM Generator Editor
The dlim.editor plug-in contains all GUI elements and their utilities. It also contains
implicit modeling process knowledge in its GUI.

4. DLIM Exporter
The dlim.exporter plugin offers three default implementations of the dlim.generator
plugin’s dlim.exporter. IDlimExporter interface and the exporter extension point:

• DlimArrivalRateExporter: Exports an arrival rate time series.

• DlimEqualDistanceRequestStampExporter: Exports request time stamps
with an equal distance from one another within each sampled arrival rate in-
terval.

• DlimUniformRequestStampExporter: Exports request time stamps with a
uniform random sampling within each sampled arrival rate interval.

138

5. DLIM Extractor
The dlim.extractor plug-in offers two default implementations of the dlim.extrac-
tor.IDlimExtractor interface and the extractor extension point:

• PeriodicProcessExtractor: Extracts a DLIM instance based on the Periodic
DLIM Extraction Processes (p-DLIM).

• SimpleProcessExtractor: Extracts a DLIM instance based on the Simple
DLIM extraction process (s-DLIM).

Both extractor extension point implementations in this plug-in use the provided de-
fault dlim.reader.ArrivalRateReader provided by the dlim.generator plug-in.

5 Conclusions

This paper provides a detailed description of LIMBO: A toolkit for creating and editing
of DLIM instances. By enabling the flexible handling of load intensity profiles, LIMBO
addresses a strong need in the areas of benchmarking and elastic capacity management.
We describe the features of LIMBO and summarize the use cases and fields of possible
application. We also provide a detailed description of LIMBO’s architecture with a focus
on extension points and functionality provided for use in other projects.

References

[Bie12] Tillmann Carlos Bielefeld. Online performance anomaly detection for large-scale soft-
ware systems, 2012.

[BLY+10] Aaron Beitch, Brandon Liu, Timothy Yung, Rean Griffith, Armando Fox, and David A.
Patterson. Rain: A Workload Generation Toolkit for Cloud Computing Applications.
Technical Report UCB/EECS-2010-14, EECS Department, University of California,
Berkeley, Feb 2010.

[Hal08] Emily H Halili. Apache JMeter: A Practical Beginner’s Guide to Automated Testing
and performance measurement for your websites. Packt Publishing Ltd, 2008.

[MBM13] Marcelo R.N. Mendes, Pedro Bizarro, and Paulo Marques. FINCoS: Benchmark Tools
for Event Processing Systems. In Proceedings of the 4th ACM/SPEC International
Conference on Performance Engineering, ICPE ’13, pages 431–432, New York, NY,
USA, 2013. ACM.

[MK12] Aleksandar Milenkoski and Samuel Kounev. Towards Benchmarking Intrusion Detec-
tion Systems for Virtualized Cloud Environments. In Proceedings of the 7th Interna-
tional Conference for Internet Technology and Secured Transactions (ICITST 2012),
pages 562–563, New York, USA, December 2012. IEEE.

[VHNC10] Jan Verbesselt, Rob Hyndman, Glenn Newnham, and Darius Culvenor. Detecting trend
and seasonal changes in satellite image time series. Remote Sensing of Environment,
114(1):106 – 115, 2010.

139

[vHWH12] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. Kieker: A Framework for
Application Performance Monitoring and Dynamic Software Analysis. In Proceedings
of the 3rd ACM/SPEC International Conference on Performance Engineering, ICPE
’12, pages 247–248, New York, NY, USA, 2012. ACM.

[vK14] Jóakim v. Kistowski. Master’s Thesis: Modeling Variatons in Load Intensity Profiles,
March 2014.

[vKHK14a] Jóakim Gunnarson von Kistowski, Nikolas Roman Herbst, and Samuel Kounev.
LIMBO: A Tool For Modeling Variable Load Intensities. In Proceedings of the
5th ACM/SPEC International Conference on Performance Engineering (ICPE 2014),
ICPE ’14, pages 225–226, New York, NY, USA, March 2014. ACM.

[vKHK14b] Jóakim Gunnarson von Kistowski, Nikolas Roman Herbst, and Samuel Kounev. Mod-
eling Variations in Load Intensity over Time. In Proceedings of the 3rd International
Workshop on Large-Scale Testing (LT 2014), co-located with the 5th ACM/SPEC Inter-
national Conference on Performance Engineering (ICPE 2014), pages 1–4, New York,
NY, USA, March 2014. ACM.

[WHGK14] Andreas Weber, Nikolas Roman Herbst, Henning Groenda, and Samuel Kounev. To-
wards a Resource Elasticity Benchmark for Cloud Environments. In Proceedings of
the 2nd International Workshop on Hot Topics in Cloud Service Scalability (HotTopiCS
2014), co-located with the 5th ACM/SPEC International Conference on Performance
Engineering (ICPE 2014). ACM, March 2014.

[ZF13] Netanel Zakay and Dror G. Feitelson. Workload resampling for performance evalu-
ation of parallel job schedulers. In Proceedings of the 4th ACM/SPEC International
Conference on Performance Engineering, ICPE ’13, pages 149–160, New York, NY,
USA, 2013. ACM.

140

