Approaching the Cloud
Using Palladio for Scalability, Elasticity, and Efficiency Analyses

Sebastian Lehrig
Matthias Becker
Engineering Cloud Systems

Scalability:
- Handle 12% load increase after 1 year

Elasticity:
- RT < 3 sec. at Christmas
- RT at 3 sec. after 10 min.

Efficiency:
- Marginal costs $0.01
Engineering Cloud Systems

Problem: Requirements cannot be ensured during design-time in cloud-based systems.

Scalability:
- Handle 12% load increase after 1 year

Elasticity:
- RT < 3 sec. at Christmas
- RT at 3 sec. after 10 min.

Efficiency:
- Marginal costs $0.01
New Method

Specify SLOs & (Dynamic) Usage Scenarios → Select Template → Refine System Models & Reconfiguration Models → Simulate → Interpret

Scalability:
- Handle 12% load increase after 1 year

Elasticity:
- RT < 3 sec. at Christmas
- RT at 3 sec. after 10 min.

Efficiency:
- Marginal costs $0.01

Sebastian Lehrig, Matthias Becker - Approaching the Cloud
Dynamic Usage Scenarios

• Time-dependent Workload

- Specify SLOs & (Dynamic) Usage Scenarios
- Select Template
- Refine System Models & Reconfiguration Models
- Simulate
- Interpret

[SLO not fulfilled]
Select Template & Refine

Specify SLOs & (Dynamic) Usage Scenarios → Select Template → Refine System Models & Reconfiguration Models → Simulate → Interpret

[SLO not fulfilled]

Sebastian Lehrig, Matthias Becker - Approaching the Cloud
Simulate & Interpret

Specify SLOs & (Dynamic) Usage Scenarios → Select Template → Refine System Models & Reconfiguration Models → Simulate → Interpret

[SLO not fulfilled]

Sebastian Lehrig, Matthias Becker - Approaching the Cloud
Tool Demo
Conclusion & Future Work

1. Template-Based Method
 - Descriptive Language
 - Improved efficiency by reuse

2. Extended Analysis
 - Scalability
 - Elasticity
 - Efficiency

3. Integrated Palladio Extensions
 - Architectural Templates
 - LIMBO
 - SimuLizar