
Using Multi-System Monitoring Time Series

to Predict Performance Events

Andreas Schörgenhumer1, Mario Kahlhofer1, Peter Chalupar1,
Hanspeter Mössenböck2, Paul Grünbacher3

{firstname.lastname}@jku.at
1 Christian Doppler Laboratory MEVSS, Johannes Kepler University Linz, Austria

2 Institute for System Software, Johannes Kepler University Linz, Austria
3 Institute for Software Systems Engineering, Johannes Kepler University Linz, Austria

Abstract

The prediction of failures and other mission-critical
events plays an important role in operating today’s
software systems and has drawn the attention of many
researchers. Event prediction is particularly challeng-
ing if multiple systems are involved. In this paper, we
thus present an event prediction model which utilizes
time series monitoring data from multiple software
systems to predict performance events. Our approach
incorporates a comprehensive, multi-system data pre-
processing framework for creating various feature vec-
tor sets, which we then use to train a random forest
classifier to evaluate our multi-system event predic-
tion. Our preliminary evaluation based on data from
monitoring 250 systems over a period of 20 days shows
promising results.

1 Introduction

Online failure prediction is an essential part of proac-
tive fault management in systems [2]. In online failure
prediction, dynamic data (e.g., monitoring time series
data) of a system is used to predict certain events
in the near future, so administrators can be notified
in advance to take precautionary actions. A failure
may not necessarily indicate a total system failure,
but it can also be a violation of quality properties
(e.g., performance anomalies), to which we refer sim-
ply as event prediction as a more general term.

Many researchers have addressed the issue of event
prediction using different prediction approaches on
various data sources. For instance, some utilized the
information stored in continuous log files [1, 4, 6], oth-
ers use system monitoring data like CPU or memory
metrics [3, 7, 8]. All of this research yielded promising
results, however, did not consider the case of analyz-
ing data from multiple systems [9]. The main goal
of extending event prediction to multiple systems is
to learn from all systems and then make predictions
for individual systems. This is especially interesting
for small systems for which insufficient data is avail-
able to create accurate prediction models, either due

to limited dynamic data or rare events. To the best
of our knowledge, no previous work on this particular
topic exists.

In this paper, we will investigate whether combin-
ing monitoring data and events from multiple systems
is feasible and yields promising results. Our moti-
vation is that low-level infrastructure measurements
such as CPU, memory, disk or network metrics of-
ten indicate problems in one system, which may also
be transferable to other systems. For example, high
CPU loads or certain disk access patterns might lead
to problems regardless of what the actual business
logic of the inspected systems is. For this purpose,
we use anonymized monitoring data from the infras-
tructure of an industry partner. This monitoring data
comprises 34 different time series metrics for hosts,
disks and network interfaces, based on which we cre-
ate fully customizable feature vector sets to predict
service slowdown performance events.

We claim the following contributions:
(i) We present a novel, highly customizable data

framework for preprocessing multi-system monitoring
data. The framework is an integral part of our event
prediction approach.

(ii) We provide a preliminary evaluation of our
event prediction on data of 250 monitored systems.
We show that our multi-system event prediction yields
promising results to be further pursued in future work.

2 Data Processing

Before we can predict events, we have to appropri-
ately process the monitoring data which our industry
partner provides.

2.1 Monitoring Data

We define a system as an independent composition of
hardware and software components, operated by some
service provider, e.g., a web shop running on a certain
hardware setup.

Each monitored system can be represented as an
entity-relationship diagram (ERD), which is shown in
Figure 1. A host is a physical or virtual computing

Hosts Disks Network Interfaces

H-01: CPU idle % D-01: Disk available N-01: Bytes received
H-02: CPU system % D-02: Disk used N-02: Bytes sent
H-03: CPU load % D-03: Disk read bytes N-03: Received packets
H-04: Memory available % D-04: Disk write bytes N-04: Received dropped
H-05: Memory available D-05: Disk read operations N-05: Sent packets
H-06: Page Faults per second D-06: Disk write operations N-06: Sent dropped
H-07: CPU user % D-07: Disk queue length N-07: Received errors
H-08: CPU IO wait % D-08: Disk util time N-08: Sent errors
H-09: Memory used D-09: Disk read time N-09: Received utilization
H-10: SWAP available D-10: Disk write time N-10: Sent utilization
H-11: SWAP used D-11: Disk inodes total

D-12: Disk inodes available %
D-13: Disk free space %

Table 1: Infrastructure metrics for entity types. Corresponding units are %, bytes, milliseconds and counts.

System Service

HostDisk Network
Interface

1 *

*
*

1 ** 1

Figure 1: ERD of a monitored system.

unit to which zero or more disks and network inter-
faces can be connected. Time series metrics are col-
lected for these three entities. Services represent the
business logic that is carried out on one or more hosts,
which, in turn, can host multiple services. The perfor-
mance events which we want to predict occur at these
services and are called service slowdowns. A service
slowdown is created by the monitoring infrastructure
of our industry partner if the average response time of
a service exceeds a threshold compared to its baseline.

Table 1 lists the 34 different metrics which are col-
lected at host level (H), disk level (D) and network
interface level (N). All these measurements are time
series recorded in 1-minute resolution.

2.2 Preprocessing Framework

We designed and implemented a comprehensive
framework for preprocessing the time series data from
multiple systems for later use with machine learning
algorithms. Many parts and processing steps of the
framework can be arbitrarily configured, which facil-
itates creating various labeled feature vector sets for
evaluation (positive samples: event, negative samples:
non-event).

We list some of the essential configuration options:
Metrics. We can define which metrics the feature

vectors should consist of (cf. Table 1). This forms the
basis for all following configuration settings. Example:
{H-03, D-02}.

Observation windows. For each metric, we can cre-

ate arbitrary observation windows (OW) that specify
how many data points (= how many minutes) of the
metric should be used, given a defined starting times-
tamp (e.g., the time of an event). Example: {H-03:
30}, start=x. This means that we want a 30-minute
OW for metric H-03, ranging from x− 30 to x.

Aggregation functions. Our framework provides
various common statistical functions (min, max,
mean, median, etc.) which can be used to aggregate
OWs if the user does not want to keep the raw time se-
ries values. Multiple aggregation functions can again
be specified for each OW of a metric. Example: {H-
03: 30 → [min, max]}. This means that the 30 min-
utes of data are aggregated into two values: minimum
and maximum.

Combination functions. The available aggregation
functions can also be used to combine data of multi-
ple, similar entities. For example, a host might have
two disks. If we selected a disk metric, we would get
datasets for the first disk and additionally for the sec-
ond disk. Since feature vectors must be identical in
length, we have to combine the two datasets, e.g., via
averaging.

The final output of our framework is a ready-to-use
CSV-file containing the labeled feature vectors.

3 Evaluation

We evaluated our approach by training a random for-
est classifier on the binary target of a service slowdown
event based on the monitoring data of 250 systems for
a total of 20 days. Slowdown events were observed
in all the systems. For training the random forest,
we used the first 14-days of data and then evaluated
the resulting models on the test set of the following
6 days of contiguous, unseen time series. For each
of the 34 time series, data points prior to an event
were aggregated per OW by four different functions:
arithmetic mean, standard deviation, min and max,
yielding a total of 34 · 4 = 136 feature vector entries

2

Window Size [minutes]

Metric 5 10 15 30 60

n
o
n
-e
v
e
n
t Accuracy 0.81 0.80 0.79 0.75 0.74

Recall 0.81 0.78 0.75 0.66 0.68
Precision 0.82 0.82 0.81 0.80 0.77
FPR 0.18 0.17 0.17 0.16 0.21
F1 score 0.81 0.80 0.78 0.72 0.72

e
v
e
n
t

Accuracy 0.56 0.56 0.55 0.56 0.57
Recall 0.48 0.51 0.44 0.49 0.47
Precision 0.57 0.56 0.56 0.57 0.59
FPR 0.37 0.39 0.35 0.37 0.33
F1 score 0.52 0.53 0.49 0.53 0.52

a
ll

Accuracy 0.75 0.75 0.72 0.74 0.72
Recall 0.65 0.65 0.63 0.64 0.59
Precision 0.81 0.81 0.78 0.79 0.80
FPR 0.15 0.16 0.18 0.17 0.15
F1 score 0.72 0.72 0.70 0.71 0.68

Table 2: Grouped test set results (bold = best).

per sample. In case of similar entities (e.g., multiple
disks), the arithmetic mean was used as the combina-
tion function. Since this is only a preliminary eval-
uation to check whether our multi-system event pre-
diction yields promising results in the first place, we
decided to use a lead time [2] of 0, meaning that we
predict events at the very moment and not into the
future yet.

Negative samples were drawn in three ways: only
from hosts where no events occurred (non-event), only
from hosts where events did occur (event) and a mix-
ture of both (all). We took samples from random
timestamps that were at least 30 minutes away from
event occurrences. The results for these three sam-
pling options are displayed in Table 2, which shows
commonly used evaluation metrics [5, pp. 79 and 127].

The preliminary results show that the non-event
option for drawing negative samples yielded the best
outcome, and the 5 minute observation window was
generally preferable compared to larger window sizes.

4 Conclusion

In this paper, we briefly introduced our multi-system
event prediction approach to predict service slowdown
performance events. It operates on time series data of
a multi-system monitoring environment. The main
idea behind the multi-system setup is to enable pre-
diction for systems where too little monitoring data
is available or when trying to predict rare events, as
we can utilize data from multiple systems and there-
fore build a large enough dataset for event prediction.
Our approach includes a powerful data preprocessing
framework which eases the creation of different feature
vector sets needed for the evaluation.

Based on monitoring data of 250 systems over a
period of 20 days, we performed a preliminary evalua-

tion. We trained a random forest classifier on different
datasets from the first 14 days and tested the predic-
tion model on the following 6-days. Results with ac-
curacies up to 81% indicate the applicability of our
multi-system event prediction approach.

In future work, we will focus on an in-depth evalu-
ation, comparing different classifiers as well as various
data configurations using our framework. Further-
more, we are interested in predicting events for com-
pletely new systems based on historic training data
from different systems.

Acknowledgements

The financial support by the Austrian Federal Min-
istry for Digital and Economic Affairs and the Na-
tional Foundation for Research, Technology and De-
velopment is gratefully acknowledged.

References

[1] F. Salfner and S. Tschirpke. “Error Log Process-
ing for Accurate Failure Prediction”. In: Proc.
of the 1st USENIX Workshop on the Analysis of
System Logs. 2008.

[2] F. Salfner, M. Lenk, and M. Malek. “A Survey
of Online Failure Prediction Methods”. In: ACM
Comput. Surv. 42.3 (2010).

[3] J. Alonso, L. A. Belanche Muñoz, and D.
Avresky. “Predicting software anomalies using
machine learning techniques”. In: Proc. of the
Int’l. Symposium on Network Computing and
Applications. 2011.

[4] L. Yu et al. “Practical online failure prediction
for Blue Gene/P: Period-based vs event-driven”.
In: Proc. of the 41st Int’l. Conf. on Dependable
Systems and Networks Workshops. 2011.

[5] C. O’Neil and R. Schutt. Doing Data Science.
Sebastopol, CA: O’Reilly Media Inc., 2014.

[6] T. Pitakrat et al. “A Framework for System
Event Classification and Prediction by Means of
Machine Learning”. In: Proc. of the 8th Int’l.
Conf. on Performance Evaluation Methodologies
and Tools. 2014.

[7] X. Zhang et al. “TaskInsight: A Fine-Grained
Performance Anomaly Detection and Problem
Locating System”. In: Proc. of the 9th Int’l. Conf.
on Cloud Computing. 2016.

[8] T. Pitakrat et al. “Hora: Architecture-aware on-
line failure prediction”. In: Journal of Systems
and Software 137 (2018).

[9] A. Schörgenhumer et al. “Using Crash Fre-
quency Analysis to Identify Error-prone Software
Technologies in Multi-System Monitoring”. In:
18th IEEE International Conference on Software
Quality, Reliability, and Security. Lisbon, Portu-
gal, 2018.

3

	Introduction
	Data Processing
	Monitoring Data
	Preprocessing Framework

	Evaluation
	Conclusion

