
Data Stream Operations as First-Class Entities in Palladio

Dominik Werle Stephan Seifermann Anne Koziolek

{firstname.lastname}@kit.edu
Karlsruhe Institute of Technology (KIT)

Abstract

The Palladio Component Model (PCM) is an ap-
proach to simulate the performance of software sys-
tems using a component-based modeling language.
When simulating PCM models, requests only influ-
ence each other if they compete for the same re-
sources. However, for some applications, such as data
stream processing, it is not realistic for requests to
be this independent. For example, it is common to
group requests in windows over time or to join data
streams. Modeling the resulting behavior and re-
source demands in the system via stochastic approxi-
mations is possible but has drawbacks. It requires ad-
ditional effort for determining the approximation and
it may require spreading information across model el-
ements that should be encapsulated in one place. In
this paper, we propose a way of modeling interaction
between requests that is similar to query languages for
data streams. Thus, we introduce state into models
without sacrificing the understandability and compos-
ability of the model.

1 Introduction

Performance models are a useful tool predicting a sys-
tem’s response time, throughput or resource utiliza-
tion in different situations.

The Palladio Component Model The Palladio
Component Model (PCM) [5] uses stochastic approx-
imations of the behavior of users and of the system,
e.g., for deciding about resource demands and call
paths. In the PCM, the load on the system is cre-
ated by users calling services that the system pro-
vides. These service calls then flow through the sys-
tem and return to the user. The effect that differ-
ent calls in the system have on each other’s timing
behavior is well-encapsulated in the competition for
resources. The PCM distinguishes two types of re-
sources. Active resources are occupied for an amount
of time that depends on their processing rate and the
resource demand of the call. Passive resources are like
semaphores which are acquired and released by a call.
Apart from resources, the behavior of the user and of
components usually does not depend on other state
information of the system. However, there has been
some work on allowing stateful dependencies for Pal-
ladio models [3], which increases prediction accuracy.

Data Streaming Applications With the emer-
gence of Big Data applications, two main approaches
to data analysis—batch and stream processing—have
been extensively studied and are supported by a va-
riety of frameworks. When both approaches are com-
bined, predicting and balancing the overall perfor-
mance is particularly interesting.

This paper focuses on extending the PCM in order
to be able to build performance models for stream-
ing applications. Streaming applications process a
continuous, possibly endless stream of data such as
sensor readings. An example for a data streaming
application is the continuous monitoring of measure-
ments from an internet of things application. For data
streaming applications, it is common to collectively
process data that belongs together. This may either
mean that the data has similar metadata, e.g., be-
cause it is sent by the same sensor, or that the data
arrived at similar points in time. Common operations
for grouping data are building sliding windows over
time and partitioning the data or joining data.

To design such a system, it is, e.g., relevant to find
out how the number of devices that provide data to a
system and their send rate influence the performance
of the system. This question can be combined with
insights on how the quality of analyses degrades with
increasing aggregation of the data, as, e.g., investi-
gated by Trittenbach et al. [6]. Thus, the analysis
of streaming applications can allow early decisions on
trade-offs between performance and analysis quality.

2 Modeling Streaming Applications

Intuitively, the PCM may represent data being sent
to the system as a call to a system interface. Recur-
ring analyses may either be modeled as separate users
that start the analysis in specific intervals or as being
triggered when data arrives at the system.

The grouping of data based on its characteristics
currently cannot be expressed in the PCM and there-
fore cannot be derived by the analysis. Thus, it is
hard to account for consequential timing dependen-
cies such as a window containing a specific number of
elements depending on the incoming data rate. A pos-
sible workaround is to stochastically approximate the
starting times of analyses and the characteristics of
data collections. However, this has the following two
drawbacks: a) It requires additional effort for deter-



Window

Median

Group

Average

Outlier

h0,p0t

h0,p1t

h1,p2t

h1,p3t

p

t

p

t

h

t

t h

t

Figure 1: Running example. Small plots show data
sent (plug p, household h). Size of circles in windows
emitted by Window illustrates number of elements.

mining the approximation, b) It may require spread-
ing information that should be encapsulated in one
place (e.g., a view) to multiple model elements. For
example, information about requests might be repre-
sented in a component behavior description.

Recently, there has been a considerable amount of
research on building models of Big Data applications
and their performance. There has also been recent
work that utilizes the Palladio modeling language to
extract performance models for Apache Spark and
Hadoop [7]. To our knowledge, current approaches
do not explicitly support grouping of data.

3 Running Example

In this section, we introduce a running example to
illustrate the benefits of modeling data stream op-
erations as first-class entities. The example is an
adaptation of the 2014 grand challenge of the confer-
ence on Distributed and Event-Based Systems (DEBS
2014) [4]. The application accepts smart plug read-
ings from different households and calculates an out-
lier value for each household for shifting time windows.

Structure The example is illustrated in Figure 1.
It takes data from N smart plugs which belong to
H households. Each plug sends its data at its own
rate Rp. They send via a network connection with
a latency Lh that may be different for each house-
hold. Window creates data windows with a given size
S for each of the plugs. The windows are created ev-
ery ∆ time units, at Ti = ∆ · i, i ∈ N, resulting in
N windows for each Ti.

1 Median creates a median
for each window, resulting in N medians for each Ti.
AverageAll calculates one overall average value of all
medians for one Ti. Group collects all median values
for one household for one Ti. For each of the H house-
holds, Outlier calculates the ratio of readings of plugs
inside the household that are greater than the overall
average and emits this value as the outlier value of the
household, resulting in H values for each Ti.

Performance We consider the duration from the
creation of a date in a sensor to the output of the re-
spective outlier value, delay, to be our metric of inter-
est. The utilization of processing, network, and HDD
resources might be of further interest. In the follow-
ing, we only discuss data-streaming-specific influence

1The windows overlap if ∆ < S. Then, sensor readings are
included in multiple windows.

factors on the system performance.

Modeling Shortcomings While Ti at which win-
dows arrive at Median is trivial to determine, the
characteristics of the windows—e.g., the number of
contained elements—depends on N and Rp. These
characteristics could be derived manually and encap-
sulated in the usage model of an additional periodi-
cally arriving process. However, a change in N would
require a change in this process. The resource de-
mands of Median depend on this contained number of
elements. Group has to calculate H groups. This has
to be encoded in the resource demand or set via a com-
ponent parameter. This means that the usage model
and the resource demand in the repository have to al-
ways be consistent. This information is spread across
different views, thus breaking the encapsulation of the
views. H also influences the number of outliers that
have to be calculated. The outlier calculation has to
join two incoming data streams, the groups and the
overall average. It is currently not possible to model
a dependency on data from different calls.

4 Data Stream Operations in Palladio

We propose an inclusion of data stream operations as
first-class entities in the PCM, meaning that they may
be explicitly expressed as data stream operations and
do not require workarounds or approximations. Our
approach is centered around data channels, which ex-
tend event-based communication as introduced into
PCM by Rathfelder [2]. Event-based communication
allows push-based communication with filtering and
distribution of calls and maintains the semantics and
analyses of the PCM model. Data channels allow ex-
plicit read operations and require an extension of the
simulation, thus changing the semantics of the model.

Data Channels A data channel is a queue that can
group elements. It specifies a queuing discipline, e.g.
first in, first out and a capacity. Additionally, items
can be configured to be consumed multiple times or
only once. Furthermore, the data channel describes,
whether a) producers/consumers should block when
the channel is full/empty when writing/reading, or
b) an item should be discarded, or c) the consumer
should return without elements. In the default case,
the data channel queues and dequeues single data el-
ements that are written to or taken from the queue.

Emitting and Consuming Data is written to
(resp. read from) a data channel via an emit (resp.
consume) event action in a service effect specification.
These actions also make the characteristics of the re-
trieved data available in the current execution con-
text, e.g., to specify resource demands that depend
on the number of elements in a group of data.

Grouping, Partitioning and Joining We cur-
rently support either a) no grouping, b) grouping all

2



Ingress

A Median

A Group

A Average

A Outlier
C1

Gt, σ:p

C2

Gn

σ:h

C3

Gn

C4

Gn, ./

emits to consumes from

Figure 2: Simplified illustration of the PCM model.

data elements that are currently available in the chan-
nel at time of consumption, with an optional mini-
mum or maximum count (shorthand in the following:
GΩ), c) grouping in sliding windows with a given size
and shift (Gt), d) grouping according to a key func-
tion (Gn). The channel holds back a given number of
groups (one by default). If new elements arrive whose
keys fit to one of the current groups, they are added
to the group. If not, the oldest group is emitted. This
can be used to collect groups in an ordered stream of
elements, where time is not the emit trigger.

Data channels support partitioning (σ) the data
based on a key function that is defined with a stochas-
tic expression. Partitioning is separate from grouping,
it is applied after group is created. Here, a suitable
key would be the plug id, the household id, or both.

Data channels can join data from different streams
if a grouping is defined and two producers write to the
data channel (./). Then, a group can only be created,
if data from both producers is present in each created
group—after partitioning, if applicable.

The operations are similar to the capabilities in the
CQL continuous query language [1]. However, they
are adapted so they can be described based on meta-
data instead of concrete values. We currently do not
address all types of windowing functions (e.g., session
or tumbling windows) but plan to do so in the future
and additionally plan to provide a formalization of the
semantics of data channels.

The data channel also creates the following char-
acterizations, if applicable: the number of collected
elements, the start and end of windows as points of
time, the value used in the key function, and statisti-
cal values of characterizations of child elements (e.g.,
household id). We have also created a new characteri-
zation, the “birth time” of a date, which may be used
to evaluate the delay, and for which statistics are also
created (e.g., the groups’ minimum birth time).

Application to the Running Example Figure 2
illustrates a realization of our running example in
PCM. Ingress handles the sensor reading ingress and
writes data to data channel C1. There is a usage sce-
nario for each sensor which calls Ingress with a char-
acterization of its plug and household id. The win-
dowing of readings is specified in the data channel
C1. All other components are activated by usage sce-

narios via recurring calls (depicted as A ). Median
consumes a window from C1, possibly blocking until
a window is available. It allocates CPU resources de-
pending on the number of elements in the window. It
then emits to C2 and C3. C2 groups depending on
window start and end and partitions according to the
household id. Group consumes from C2 and emits to
C4. C3 groups by the window start and end. Aver-
age consumes groups of medians for each time window
from C3. It allocates CPU resources depending on
the number of elements in the group and emits to C4.
C4 joins on the window start/end and allows multiple
consumptions of average. Outlier consumes from C4

and specifies an appropriate resource demand.

5 Conclusion

In this paper we presented our approach for modeling
data streaming operations in PCM using data chan-
nels that can group calls that flow through the system.

We have prototypically implemented our approach
into the SimuLizar simulator for the PCM and are
currently working on completing the implementation
of streaming operations and making it public2. Our
approach currently modifies the simulation and its se-
mantics. Previous work transformed extended models
back to PCM instances [2]. We plan to present such
a transformation and a formalization in future work.

In the future, we expect to be able to use our ap-
proach together with mappings to concrete technology
realizations. We plan to include interfaces for data
channels that describe the resource demands of the
operations a data channel provides, such as window-
ing, partitioning and emitting or consuming events.

Acknowledgements This work was partially funded by the

German Research Foundation (DFG) as part of the Research

Training Group GRK 2153: “Energy Status Data – Informatics

Methods for its Collection, Analysis and Exploitation”.

References
[1] A. Arasu, S. Babu, and J. Widom. “The CQL continuous

query language: semantic foundations and query execu-
tion”. In: The VLDB Journal 15.2 (2006), pp. 121–142.

[2] C. Rathfelder. Modelling Event-Based Interactions in
Component-Based Architectures for Quantitative System
Evaluation. The Karlsruhe Series on Software Design and
Quality. KIT Scientific Publishing, 2013.

[3] L. Happe, B. Buhnova, and R. Reussner. “Stateful
component-based performance models”. In: Software &
Systems Modeling 13.4 (2014), pp. 1319–1343.

[4] Z. Jerzak and H. Ziekow. “The DEBS 2014 Grand Chal-
lenge”. In: DEBS ’14. ACM, 2014, pp. 266–269.

[5] R. H. Reussner et al. Modeling and Simulating Software
Architectures – The Palladio Approach. MIT Press, 2016.

[6] H. Trittenbach, J. Bach, and K. Böhm. “On the Tradeoff
between Energy Data Aggregation and Clustering Qual-
ity”. In: e-Energy ’18. 2018, pp. 399–401.

[7] J. Kroß and H. Krcmar. “PerTract: Model Extraction and
Specification of Big Data Systems for Performance Predic-
tion by the Example of Apache Spark and Hadoop”. In:
Big Data and Cognitive Computing 3.3 (2019).

2https://sdqweb.ipd.kit.edu/wiki/PCM_Data_Channels

3

https://sdqweb.ipd.kit.edu/wiki/PCM_Data_Channels

	Introduction
	Modeling Streaming Applications
	Running Example
	Data Stream Operations in Palladio
	Conclusion

