Mapping Data Flow Models to the Palladio Component Model

Stephan Seifermann, Dominik Werle, Mazen Ebada
06.11.2019 - Symposium on Software Performance 2019, Würzburg
Motivation

Software Architects

Sketched Architecture

Will quality goals be achieved?

Architecture Models

Are all models consistent?

Analyses

other models

validate

valid order

extract items

other tools

Motivation → State of the Art → Foundations → Running Example → Mappings → Process → Summary
High Level Challenges and Goals

Challenges of multiple models and analyses
- Consistency between separated models not trivial
- Additional maintenance effort for multiple models
- Analysis results have to be about same version

Benefit of using dedicated models and analyses
- Modeling approach tailored to quality analysis
- Established analyses provide good predictions
Topics in this Talk

Covered Models

• Data Flow Diagrams (DFDs) [DeMarco79]
• Palladio Component Model (PCM) [Reussner16]

Covered Challenges

• Consistency: Mapping rules between DFDs and PCM
• Maintenance Effort: Idea for automated PCM stub generation
State of the Art

Relation Data Flow and Control Flow Diagrams

- Mapping DFD to object-oriented design [Alabiso88]
 handling of ambiguities and design space not clear

- Mapping DFD to fine-grained behavior [LarsenPlatToetenel94]
 no realistic DFDs (1:1 mapping of inputs to outputs)

Resolving ambiguities

- Control flow nodes in DFDs [WardMellor86]
 breaks separation between requirements and design

- Relation inputs and outputs [TsePong89][BrunzaWeide93]
 Does not match required level of abstraction
Foundations

Data Flow Diagrams

- Defined by DeMarco
- Sources, sinks, processors, files, data flows

Data Mapping Extension

- Mapping of input data to output data [BrunzaWeide93]
- E: Set of all entities
- D: Set of all data
- (e, D_{in}, D_{out}): Mapping with $e \in E \land D_{in}, D_{out} \in D$
Running Example

Customer

order

pay
Running Example

(Customer, ∅, {order})
Running Example

(Customer, ∅, {order})
(order, {order}, {orderConfirmation, bill})
Running Example

(Customer, ∅, {order})
(order, {order}, {orderConfirmation, bill})

(Customer, {orderConfirmation}, {creditCardData})
Running Example

(Customer, ∅, {order})
(order, {order}, {orderConfirmation, bill})
(Customer, {orderConfirmation}, {creditCardData})
(pay, {creditCardData, bill}, {paidBill, payConfirmation})
Coverage of Views by Mapping Rules

Structural View
- Components
- System

covered

Behavioral View
- Usage
- Component Behavior

covered

Deployment
- Resources
- Allocation

not covered
Structural View – Components

Motivation ➔ State of the Art ➔ Foundations ➔ Running Example ➔ Mappings ➔ Process ➔ Summary

«DataType» Order
«DataType» CCD
«DataType» Bill
«DataType» OrderConfirmation
«DataType» PayConfirmation

«Interface» IOrder
order(Order) : OrderConfirmation

«Interface» IPay
pay(CCD) : PayConfirmation

Order

Pay

(\text{order, \{order\}}, \{\text{orderConfirmation, bill}\})

(pay, \{\text{creditCardData, bill}\}, \{\text{paidBill, payConfirmation}\})

IPullBill
getBill() : Bill

State of the Art
Mappings
Running Example
»

Motivation
Structural View – System

«System»
OrderSystem

«AssemblyContext»
Order

«AssemblyContext»
Pay
Behavioral View – Usage

«UsageScenario»
Customer

«ScenarioBehavior»
Customer

«ELSC»
call order

«Delay»
wait

«ELSC»
call pay

«Workload»

(Customer, Ø, {order}) (Customer, {orderConfirmation}, {creditCardData})
Behavioral View – Component Behavior

«RDSEFF»
Pay::pay

«InternalAction»
process payment

«ECA»
get bill

Motivation ➤ State of the Art ➤ Foundations ➤ Running Example ➤ Mappings ➤ Process ➤ Summary
Mapping Data Dependencies to Signatures

Assumptions

- Identification of caller
- All data has to originate from and go to caller

```
«Interface»
IOrder

order(Order) : Bill, OrderConfirmation
```
Handling Different Data Sources and Targets

Pull

Customer

Order

getBill() : Bill

Pay

IOrder

order(Order) : OrderConfirmation

requirement: data must not be trigger for process

State of the Art

Foundations

Summary

Motivation

Running Example

Mappings

Process

Customer

order

orderConfirmation

bill

pay

(order, {order},
{orderConfirmation, bill})

Stephan Seifermann, Dominik Werle, Mazen Ebada –
Mapping Data Flow Models to the Palladio Component Model

Software Design and Quality Group
Institute for Program Structures and Data Organization

06 November 2019
Handling Different Data Sources and Targets

Push

Customer

satisfies data dependencies and triggers

Motivation ➤ State of the Art ➤ Foundations ➤ Running Example ➤ Mappings ➤ Process ➤ Summary
Envisioned Development Process

Requirements Engineer

DFD

Design Decisions

Automatic Transformation

Architecture

Tracing

Consistency Check

Software Architect

Report

Motivation ➔ State of the Art ➔ Foundations ➔ Running Example ➔ Mappings ➔ Process ➔ Summary
Conclusion

Summary

• Motivation: DFDs and PCM instances tailored for different quality analyses
• Approach: Mappings from DFDs to PCM are possible but not trivial
• Customization: Considering design decisions necessary for realistic architectures

Envisioned Benefit

• Use best fitting models and analyses for quality prediction
• Lower effort for using both models together

Future Work

• Identify further call patterns and complete mappings
• Define set of selectable design decisions
• Realize automated transformation to apply mappings
Literature References

- **[DeMarco79]**

- **[WardMellor86]**

- **[Alabiso88]**

- **[TsePong89]**
Literature References

- [BrunzaWeide93]

- [LarsenPlatToetenel94]

- [Reussner16]
Image References

Motivation

- Group of Architects
 [Image: https://pixabay.com/photos/architect-people-plan-construction-3979490/]
 Pixabay License - https://pixabay.com/service/license/

- Architecture Drawing
 [Image: https://pixabay.com/photos/architecture-blueprint-floor-plan-1857175/]
 Pixabay License - https://pixabay.com/service/license/

- Shield Icon
 [Image: https://pixabay.com/de/vectors/schild-sicherheit-schutz-sicher-1086702/]
 Pixabay License - https://pixabay.com/service/license/
Image References

- **Goals and Challenges**
 - Darts Board
 https://pixabay.com/photos/target-goal-success-dart-board-1955257/
 Pixabay License - https://pixabay.com/service/license/
 - Magic Cube
 Pixabay License - https://pixabay.com/service/license/

- **Topics**
 - Person in Front of Whiteboard
 Pixabay License - https://pixabay.com/service/license/
 - Lightbulb
 Pixabay License - https://pixabay.com/service/license/