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Manual identification of parametric dependencies is 
not always possible, time-intensive and error-prone

Learning of dependencies using standard monitoring 
data collected during production

Increase model accuracy and expressiveness, 
additional step towards autonomic model learning

Use feature selection techniques for detecting, 
regression for characterizing the dependencies
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• Selection based on comparison with „noise feature“

• Algorithm: Random forest [H95]

 Wrapper
• Selection based on accuracy error for a feature subset, compared with a 

baseline regressor

• Algorithm: M5 trees [Q+92] and Linear regression

 Filter: Correlation-based
• Pearson product-moment correlation coefficient (PPMCC)
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 Results are threshold-independent
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Filter Application
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Filtering Step Relevant Irrelevant Invalid Total
None 11 94 5 110
Identical (1) 11 45 5 61
(1) + Correlating (2) 11 35 1 47
(1) + (2) + Graph-based (3) 11 8 1 20

In total, 86 irrelvant and and 4 invalid dependencies are deleted.

This results in a precision (11 relevant to 1 invalid) of 91.7 %.
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The datasets are diverse and varying in terms of number and types of parameters, 
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 Using Classification and Regression Trees (CART)
to train a Decision Tree on the following features:

• Number of training instances (Size)

• Number of parameters (NumParam)

• Range of runtime values (RuntimeRange)

• Coefficient of variance of runtime (RuntimeCV)

• Highest linear correlation between any input parameter and runtime (HighestCorrelation)

• Lowest linear correlation between any input parameter and runtime (LowestCorrelation)

• Coefficient of determination (R2) (R2LinReg)
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Meta-Classifier II
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Improves overall MAE by 30% in comparison to always using SVR.
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Identification parameters

Trace reconstruction

Parameter-related information

What are the important features of each parameter? 

How can the features be extracted?

We can only observe the response time.

How can the resource demands be measured?
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 Distributed deployment of TeaStore [vKE+18] application

 Locust as load driver with typical behavior of customer
• Login & logout

• Browse for products

• Add products to cart

• Checkout cart

We need dependencies as gold standard.

How can they be achieved?

Comparison with other paradigms required?
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