
Graph-Based Analysis and Visualization of

Software Traces

Symposium on Software Performance 2019

Würzburg, November 5, 2019

Richard Müller and Matteo Fischer

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

WHY GRAPHS?

2

[Diehl and Telea 2014, Müller et al. 2018]

 Software data naturally map to a multivariate,

compound, attributed, and time-dependent graph

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

KIEKER

 Framework to monitor, analyze, and visualize software

behavior

 Supports event-based and state-based monitoring

 Usable with Java, .NET, COBOL, and Visual Basic 6

 Provides tools

 to inspect and analyze traces

 to visualize them as UML sequence diagrams, markov

chains, dependency graphs, and trace timing diagrams

 Output writers save traces to the file system or in a

relational database

3

[van Hoorn, Waller, and Hasselbring 2012; Waller 2014; http://kieker-monitoring.net]

http://kieker-monitoring.net/

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

BUT…

 There is no output writer for a graph database

 The visualizations produced by the Kieker tools are

static images, for example,

 Deployment operation dependency graph of Bookstore

example

4

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

CONTRIBUTION

 jQAssistant plugin that scans event-based Kieker traces

and stores them as a graph in a Neo4j database

 The plugin supports application performance monitoring

and architecture discovery

 It complements existing Kieker tools

 Analysis

 Inspect and analyze traces with the graph query

language Cypher

 Visualization

 Use interactive visualizations of call and dependency

graphs

5

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

TECHNICAL BACKGROUND

6

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

NEO4J

 Native graph database to store, manage, and query

large amounts of connected data

 Models graph data with a labeled property graph

 Labels are used to classify nodes

 Relationships connect nodes, have a type, and can have a

direction

 Properties are attributes of nodes and relationships and

stored as key-value pairs

7

[Needham and Hodler 2019; https://neo4j.com]

https://neo4j.com/

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

CYPHER

 Graph query language of Neo4j

 Matches given patterns in the graph using a visual,

ASCII art-based syntax

 () node

 -[]-> directed relationship

MATCH

(m1:Method)-[CALLS]->(m2:Method)

RETURN

m1.name, m2.name

8

[Francis et al. 2018; https://www.opencypher.org]

https://www.opencypher.org/

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

JQASSISTANT

9

 Scans software artifacts and stores

them in a Neo4j graph database

 Analyzes and modifies the graph

data with rules

 Constraints to identify violations

 Concepts to aggregate, enrich,

and filter

 Create reports

[https://jqassistant.org; https://softvis-research.github.io/jqassistant-plugins]

 Can be executed with Maven or from the command line

 Extendable through plugins, for example, Java, Jira, GitHub-

Issues, JaCoCo scanner

https://jqassistant.org/
https://softvis-research.github.io/jqassistant-plugins

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

KIEKER PLUGIN

 Plugin for jQAssistant to scan and analyze event-based

software traces

 Published on GitHub under GPL-3.0

10

[https://github.com/softvis-research/jqa-kieker-plugin]

https://github.com/softvis-research/jqa-kieker-plugin

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

KIEKER GRAPH SCHEMA

11

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

APPLICATION EXAMPLE

12

[http://kieker-monitoring.net/documentation]

 Instrumented the Bookstore

example from the Kieker user

guide with AspectJ and activated

aspects OperationExecution
and OperationCall

 Scanned the monitored traces

with the jQAssistant command

line tool using the Kieker plugin

http://kieker-monitoring.net/documentation

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

ANALYSIS

13

MATCH
(t:Type)-[:DECLARES]->(m:Method)

WHERE
t.fqn STARTS WITH "kieker"

RETURN
t.name as Type, m.name AS Method, m.incomingCalls AS
Calls, m.duration AS Duration ORDER BY Duration DESC

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

CALL GRAPH

14

[https://www.yworks.com/neo4j-explorer]

The property duration of each Method node is mapped to a color gradient

from green (short) to red (long)

https://www.yworks.com/neo4j-explorer

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

DEPENDENCY GRAPH

15

[https://www.yworks.com/neo4j-explorer]

https://www.yworks.com/neo4j-explorer

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

CONCLUSION

 Presented a jQAssistant plugin that scans event-based

software traces and stores them as a graph in a Neo4j

database

 Illustrated feasibility and usefulness with the Bookstore

example

 Analysis with an example Cypher query for aggregated

method calls

 Visualization of the call and dependency graphs in the

yFiles Neo4j explorer

16

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

FUTURE WORK

 Extend the plugin to scan further record types, for

example, state-based records

 The plugin can be used as a blueprint to contribute a

Kieker writer for graph databases

17

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

REFERENCES

 S. Diehl and A. C. Telea. “Multivariate Graphs in Software Engineering“. In: Multivar.

Netw. Vis. Dagstuhl Semin. #13201 Dagstuhl Castle, Ger. May 12-17, 2013 Revis.

Discuss. Ed. by A. Kerren, H. C. Purchase, and M. O. Ward. Vol. 8380. Lecture

Notes in Computer Science. Cham: Springer International Publishing, 2014. Chap. 2,

pp. 13-36.

 N. Francis et al. “Cypher: An Evolving Query Language for Property Graphs”. In:

ACM SIG-MOD Int. Conf. Manag. Data. 2018, p. 13.

 A. van Hoorn, J. Waller, and W. Hasselbring. “Kieker: A framework for application

performance monitoring and dynamic software analysis”. In: 3rd ACM/SPEC Int.

Conf. Perform. Eng. (ICPE 2012). ACM, 2012, pp. 247-248.

 R. Müller et al. “Towards an Open Source Stack to Create a Unfied Data Source for

Software Analysis and Visualization”. In: Proc. 6th IEEE Work. Conf. Softw. Vis.

Madrid, Spain: IEEE, 2018.

 M. Needham and A. E. Hodler. Graph Algorithms -Practical Examples in Apache

Spark & Neo4j. 1st ed. O'Reilly, 2019.

 J. Waller. Performance Benchmarking of Application Monitoring Frameworks. Kiel

Computer Science Series 2014/5. Department of Computer Science, Kiel University,

2014.

18

THANK YOU.

Richard Müller and Matteo Fischer

Information Systems Institute, Software Engineering Department

rmueller@wifa.uni-leipzig.de

@rimllr

https://github.com/softvis-research

http://softvis.wifa.uni-leipzig.de

19

mailto:rmueller@wifa.uni-leipzig.de
https://github.com/softvis-research
http://softvis.wifa.uni-leipzig.de/

