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WHY GRAPHS?
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[Diehl and Telea 2014, Müller et al. 2018]

 Software data naturally map to a multivariate, 

compound, attributed, and time-dependent graph
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KIEKER

 Framework to monitor, analyze, and visualize software

behavior

 Supports event-based and state-based monitoring

 Usable with Java, .NET, COBOL, and Visual Basic 6

 Provides tools

 to inspect and analyze traces

 to visualize them as UML sequence diagrams, markov

chains, dependency graphs, and trace timing diagrams

 Output writers save traces to the file system or in a 

relational database
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[van Hoorn, Waller, and Hasselbring 2012; Waller 2014; http://kieker-monitoring.net]

http://kieker-monitoring.net/
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BUT…

 There is no output writer for a graph database

 The visualizations produced by the Kieker tools are

static images, for example,

 Deployment operation dependency graph of Bookstore

example
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CONTRIBUTION

 jQAssistant plugin that scans event-based Kieker traces 

and stores them as a graph in a Neo4j database

 The plugin supports application performance monitoring

and architecture discovery

 It complements existing Kieker tools

 Analysis

 Inspect and analyze traces with the graph query

language Cypher

 Visualization

 Use interactive visualizations of call and dependency

graphs
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TECHNICAL BACKGROUND
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NEO4J

 Native graph database to store, manage, and query 

large amounts of connected data

 Models graph data with a labeled property graph

 Labels are used to classify nodes

 Relationships connect nodes, have a type, and can have a 

direction

 Properties are attributes of nodes and relationships and 

stored as key-value pairs
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[Needham and Hodler 2019; https://neo4j.com]

https://neo4j.com/
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CYPHER

 Graph query language of Neo4j

 Matches given patterns in the graph using a visual, 

ASCII art-based syntax

 ( ) node

 -[ ]-> directed relationship

MATCH

(m1:Method)-[CALLS]->(m2:Method)

RETURN

m1.name, m2.name
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[Francis et al. 2018; https://www.opencypher.org]

https://www.opencypher.org/
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JQASSISTANT
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 Scans software artifacts and stores

them in a Neo4j graph database

 Analyzes and modifies the graph

data with rules

 Constraints to identify violations

 Concepts to aggregate, enrich, 

and filter

 Create reports

[https://jqassistant.org; https://softvis-research.github.io/jqassistant-plugins]

 Can be executed with Maven or from the command line

 Extendable through plugins, for example, Java, Jira, GitHub-

Issues, JaCoCo scanner

https://jqassistant.org/
https://softvis-research.github.io/jqassistant-plugins
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KIEKER PLUGIN

 Plugin for jQAssistant to scan and analyze event-based 

software traces

 Published on GitHub under GPL-3.0
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[https://github.com/softvis-research/jqa-kieker-plugin]

https://github.com/softvis-research/jqa-kieker-plugin
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KIEKER GRAPH SCHEMA
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APPLICATION EXAMPLE
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[http://kieker-monitoring.net/documentation]

 Instrumented the Bookstore

example from the Kieker user

guide with AspectJ and activated

aspects OperationExecution
and OperationCall

 Scanned the monitored traces

with the jQAssistant command 

line tool using the Kieker plugin

http://kieker-monitoring.net/documentation
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ANALYSIS
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MATCH
(t:Type)-[:DECLARES]->(m:Method)

WHERE
t.fqn STARTS WITH "kieker"

RETURN
t.name as Type, m.name AS Method, m.incomingCalls AS
Calls, m.duration AS Duration ORDER BY Duration DESC
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CALL GRAPH
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[https://www.yworks.com/neo4j-explorer]

The property duration of each Method node is mapped to a color gradient

from green (short) to red (long)

https://www.yworks.com/neo4j-explorer
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DEPENDENCY GRAPH
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[https://www.yworks.com/neo4j-explorer]

https://www.yworks.com/neo4j-explorer
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CONCLUSION

 Presented a jQAssistant plugin that scans event-based 

software traces and stores them as a graph in a Neo4j 

database

 Illustrated feasibility and usefulness with the Bookstore 

example

 Analysis with an example Cypher query for aggregated 

method calls

 Visualization of the call and dependency graphs in the 

yFiles Neo4j explorer
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FUTURE WORK

 Extend the plugin to scan further record types, for 

example, state-based records

 The plugin can be used as a blueprint to contribute a 

Kieker writer for graph databases
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