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— Software data naturally map to a multivariate,

compound, attributed, and time-dependent graph
[Diehl and Telea 2014, Muller et al. 2018]
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KIEKER

— Framework to monitor, analyze, and visualize software
behavior

— Supports event-based and state-based monitoring
— Usable with Java, .NET, COBOL, and Visual Basic 6
— Provides tools

— to inspect and analyze traces

— to visualize them as UML sequence diagrams, markov
chains, dependency graphs, and trace timing diagrams

— Output writers save traces to the file system or in a
relational database

[van Hoorn, Waller, and Hasselbring 2012; Waller 2014; http://kieker-monitoring.net]
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BUT...

— There is no output writer for a graph database
— The visualizations produced by the Kieker tools are
static images, for example,

— Deployment operation dependency graph of Bookstore
example

<<execution container>>

<<deployment component>>
(@1:..BookstoreStarter

extractNumRequestsFromArgs(..)
| _-

‘—_— . spawnAsyncRequest(..)
1] —

<<deployment component>= <<deployment component>=
@3:..BookstoreStarter§ 1 (@?2:..Bookstore
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CONTRIBUTION

— JQAssistant plugin that scans event-based Kieker traces
and stores them as a graph in a Neo4j database

— The plugin supports application performance monitoring
and architecture discovery
— It complements existing Kieker tools
— Analysis
— Inspect and analyze traces with the graph query
language Cypher
— Visualization

— Use interactive visualizations of call and dependency
graphs
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TECHNICAL BACKGROUND
Data Acquisition =3 Analysis = Visualization

Software Aggregation, Views
Artifacts Enrichment,
Filtering
<xml> I
Is
Test _|
$0;1565...
... |$1;1565...
0o $2:1565... Graph Database
$3;1565...
1565...
Git
/QAssistant Y yiles Neot Explorer
@ neoy]
UNIVERSITAT

LEIPZIG Information Systems Institute, Software Engineering Department



SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

NEO4J @neoy

— Native graph database to store, manage, and query
large amounts of connected data

— Models graph data with a labeled property graph
— Labels are used to classify nodes
— Relationships connect nodes, have a type, and can have a
direction
— Properties are attributes of nodes and relationships and
stored as key-value pairs

CALLS

[Needham and Hodler 2019; https://neo4j.com]
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CYPHER @neoy

— Graph query language of Neo4;
— Matches given patterns in the graph using a visual,
ASCII art-based syntax
— () node
— -[ 1-> directed relationship

CALLS

- m1 » m2 - -{ hame: spawnAsynchRequest

MATCH
(ml:Method) - [CALLS] -> (m2 :Method)
RETURN

ml.name, m2.name
[Francis et al. 2018; https://www.opencypher.org]
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JOQASSISTANT /QAssistant
— Scans software artifacts and stores scn |l Pugine
them in a Neo4j graph database
— Analyzes and modifies the graph Command :
data with rules Maven Anabvze [y Fluaine
— Constraints to identify violations ’
— Concepts to aggregate, enrich, Repert oy Fleais
and filter

— Create reports
— Can be executed with Maven or from the command line

— Extendable through plugins, for example, Java, Jira, GitHub-
Issues, JaCoCo scanner

[https://jgassistant.org; https://softvis-research.github.io/jgassistant-plugins]
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KIEKER PLUGIN

— Plugin for jQAssistant to scan and analyze event-based
software traces

— Published on GitHub under GPL-3.0

Kieker traces
(*.dat, *.map)

Y

S
Kieke(:?rr;ces —7/Kieker records/L) Create Kieker graph

Kieker graph Apply Call & depen-
rules dency graphs

[https://github.com/softvis-research/jqa-kieker-plugin]
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KIEKER GRAPH SCHEMA

controllerName: String
experimentld: int
fileName: String
hostname: String
loggingTimestamp: long
numberOfRecords: int
timeOffset: int

timeUnit: String
version: String

timestamp: long
orderindex: int

name: String
signature: String

duration: long -

incomingCalls: int
outgoingCalls: int

L1

CALL

S

DECLARES

DEPENDS_ON

traceld: long
threadld: long

{hostName: String

loggingTimestamp: long
sessionld: String

beforeTimestamp: long

|afterTimestamp: long

beforeOrderindex: int
afterOrderindex: int

|name: String

fgn: String
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APPLICATION EXAMPLE

— Instrumented the Bookstore BookstoreStarter
example from the Kieker user Lrein
guide with AspectJ and activated
aspects OperationExecution
. - bookstore
and OperationCall
. Bookstore o —
— Scanned the monitored traces + searchBook ()
with the jQAssistant command - orm
. . . . CRM
line tool using the Kieker plugin T
- catalog
.Catalog
- catalog
+ getBook ()

[http://kieker-monitoring.net/documentation]
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ANALYSIS

MATCH

(t:Type)-[ :DECLARES]->(m:Method)
WHERE

t.fgn STARTS WITH "kieker"
RETURN

t.name as Type, m.name AS Method, m.incomingCalls AS
Calls, m.duration AS Duration ORDER BY Duration DESC

Type Method Calls Duration
"BookstoreStarter” "main” 1 55498700
"BookstoreStarter$1" "run” 5 33558300
"Bookstore" "searchBook" 5 32389100
"Catalog" "getBook" 10 30357600
"CRM" "getOffers" 5 19180500
"BookstoreStarter” "spawnAsyncRequest" 5 12639600
"BookstoreStarter" "extractNumRequestsFromArgs" 1 1280600
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i i beta
CALL GRAPH @ yriles Neodj Explorer

\_} Method
getBook

Method
getOffers

The property duration of each Method node is mapped to a color gradient
from green (short) to red (long)

[https://www.yworks.com/neo4j-explorer]
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DEPENDENCY GRAPH yFiles Neodj Explorer "

DEPENDS_ON

Type
BookstoreStarter$1

DEPENDS_ON DEPENDS_O!

[https://www.yworks.com/neo4j-explorer]
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CONCLUSION

— Presented a jQAssistant plugin that scans event-based
software traces and stores them as a graph in a Neo4j
database

— lllustrated feasibility and usefulness with the Bookstore
example

Analysis with an example Cypher query for aggregated
method calls

Visualization of the call and dependency graphs in the
yFiles Neo4j explorer
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FUTURE WORK

— Extend the plugin to scan further record types, for
example, state-based records

— The plugin can be used as a blueprint to contribute a
Kieker writer for graph databases
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