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WHY GRAPHS?
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[Diehl and Telea 2014, Müller et al. 2018]

 Software data naturally map to a multivariate, 

compound, attributed, and time-dependent graph
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KIEKER

 Framework to monitor, analyze, and visualize software

behavior

 Supports event-based and state-based monitoring

 Usable with Java, .NET, COBOL, and Visual Basic 6

 Provides tools

 to inspect and analyze traces

 to visualize them as UML sequence diagrams, markov

chains, dependency graphs, and trace timing diagrams

 Output writers save traces to the file system or in a 

relational database
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[van Hoorn, Waller, and Hasselbring 2012; Waller 2014; http://kieker-monitoring.net]

http://kieker-monitoring.net/
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BUT…

 There is no output writer for a graph database

 The visualizations produced by the Kieker tools are

static images, for example,

 Deployment operation dependency graph of Bookstore

example
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CONTRIBUTION

 jQAssistant plugin that scans event-based Kieker traces 

and stores them as a graph in a Neo4j database

 The plugin supports application performance monitoring

and architecture discovery

 It complements existing Kieker tools

 Analysis

 Inspect and analyze traces with the graph query

language Cypher

 Visualization

 Use interactive visualizations of call and dependency

graphs
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TECHNICAL BACKGROUND
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NEO4J

 Native graph database to store, manage, and query 

large amounts of connected data

 Models graph data with a labeled property graph

 Labels are used to classify nodes

 Relationships connect nodes, have a type, and can have a 

direction

 Properties are attributes of nodes and relationships and 

stored as key-value pairs
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[Needham and Hodler 2019; https://neo4j.com]

https://neo4j.com/
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CYPHER

 Graph query language of Neo4j

 Matches given patterns in the graph using a visual, 

ASCII art-based syntax

 ( ) node

 -[ ]-> directed relationship

MATCH

(m1:Method)-[CALLS]->(m2:Method)

RETURN

m1.name, m2.name
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[Francis et al. 2018; https://www.opencypher.org]

https://www.opencypher.org/
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JQASSISTANT
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 Scans software artifacts and stores

them in a Neo4j graph database

 Analyzes and modifies the graph

data with rules

 Constraints to identify violations

 Concepts to aggregate, enrich, 

and filter

 Create reports

[https://jqassistant.org; https://softvis-research.github.io/jqassistant-plugins]

 Can be executed with Maven or from the command line

 Extendable through plugins, for example, Java, Jira, GitHub-

Issues, JaCoCo scanner

https://jqassistant.org/
https://softvis-research.github.io/jqassistant-plugins
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KIEKER PLUGIN

 Plugin for jQAssistant to scan and analyze event-based 

software traces

 Published on GitHub under GPL-3.0
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[https://github.com/softvis-research/jqa-kieker-plugin]

https://github.com/softvis-research/jqa-kieker-plugin
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KIEKER GRAPH SCHEMA
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APPLICATION EXAMPLE
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[http://kieker-monitoring.net/documentation]

 Instrumented the Bookstore

example from the Kieker user

guide with AspectJ and activated

aspects OperationExecution
and OperationCall

 Scanned the monitored traces

with the jQAssistant command 

line tool using the Kieker plugin

http://kieker-monitoring.net/documentation
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ANALYSIS
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MATCH
(t:Type)-[:DECLARES]->(m:Method)

WHERE
t.fqn STARTS WITH "kieker"

RETURN
t.name as Type, m.name AS Method, m.incomingCalls AS
Calls, m.duration AS Duration ORDER BY Duration DESC
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CALL GRAPH
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[https://www.yworks.com/neo4j-explorer]

The property duration of each Method node is mapped to a color gradient

from green (short) to red (long)

https://www.yworks.com/neo4j-explorer
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DEPENDENCY GRAPH
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[https://www.yworks.com/neo4j-explorer]

https://www.yworks.com/neo4j-explorer
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CONCLUSION

 Presented a jQAssistant plugin that scans event-based 

software traces and stores them as a graph in a Neo4j 

database

 Illustrated feasibility and usefulness with the Bookstore 

example

 Analysis with an example Cypher query for aggregated 

method calls

 Visualization of the call and dependency graphs in the 

yFiles Neo4j explorer
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FUTURE WORK

 Extend the plugin to scan further record types, for 

example, state-based records

 The plugin can be used as a blueprint to contribute a 

Kieker writer for graph databases
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