UNIVERSITAT
LEIPZIG

Symposium on Software Performance 2019

Graph-Based Analysis and Visualization of
Software Traces

Wirzburg, November 5, 2019
Richard Miller and Matteo Fischer

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

WHY GRAPHS?
Data Acquisition === Analysis =3 Visualization
Software Aggregation, Views
Artifacts Enrichment,

Filtering

N Il 5

Test _|

$0;1565...
:;:ggg Graph Database
 |s3:1565...

— Software data naturally map to a multivariate,

compound, attributed, and time-dependent graph
[Diehl and Telea 2014, Muller et al. 2018]

Ky

UNIVERSITAT

LEIPZIG Information Systems Institute, Software Engineering Department 2

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

KIEKER

— Framework to monitor, analyze, and visualize software
behavior

— Supports event-based and state-based monitoring
— Usable with Java, .NET, COBOL, and Visual Basic 6
— Provides tools

— to inspect and analyze traces

— to visualize them as UML sequence diagrams, markov
chains, dependency graphs, and trace timing diagrams

— Output writers save traces to the file system or in a
relational database

[van Hoorn, Waller, and Hasselbring 2012; Waller 2014; http://kieker-monitoring.net]

{’{.‘;ﬁ.ﬁ?s”’” Information Systems Institute, Software Engineering Department 3

http://kieker-monitoring.net/

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

BUT...

— There is no output writer for a graph database
— The visualizations produced by the Kieker tools are
static images, for example,

— Deployment operation dependency graph of Bookstore
example

<<execution container>>

<<deployment component>>
(@1:..BookstoreStarter

extractNumRequestsFromArgs(..)
| _-

‘—_— . spawnAsyncRequest(..)
1] —

<<deployment component>= <<deployment component>=
@3:..BookstoreStarter§ 1 (@?2:..Bookstore

RO

'Entry’'

HE'T;‘ZJEESHN Information Systems Institute, Software Engineering Department

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

CONTRIBUTION

— JQAssistant plugin that scans event-based Kieker traces
and stores them as a graph in a Neo4j database

— The plugin supports application performance monitoring
and architecture discovery
— It complements existing Kieker tools
— Analysis
— Inspect and analyze traces with the graph query
language Cypher
— Visualization

— Use interactive visualizations of call and dependency
graphs

EET;‘ZJEESWN Information Systems Institute, Software Engineering Department

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

TECHNICAL BACKGROUND
Data Acquisition =3 Analysis = Visualization

Software Aggregation, Views
Artifacts Enrichment,
Filtering
<xml> I
Is
Test _|
$0;1565...
... |$1;1565...
0o $2:1565... Graph Database
$3;1565...
1565...
Git
/QAssistant Y yiles Neot Explorer
@ neoy]
UNIVERSITAT

LEIPZIG Information Systems Institute, Software Engineering Department

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

NEO4J @neoy

— Native graph database to store, manage, and query
large amounts of connected data

— Models graph data with a labeled property graph
— Labels are used to classify nodes
— Relationships connect nodes, have a type, and can have a
direction
— Properties are attributes of nodes and relationships and
stored as key-value pairs

CALLS

[Needham and Hodler 2019; https://neo4j.com]

UNIVERSITAT

LEIPZIG Information Systems Institute, Software Engineering Department 7

https://neo4j.com/

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

CYPHER @neoy

— Graph query language of Neo4;
— Matches given patterns in the graph using a visual,
ASCII art-based syntax
— () node
— -[1-> directed relationship

CALLS

- m1 » m2 - -{ hame: spawnAsynchRequest

MATCH
(ml:Method) - [CALLS] -> (m2 :Method)
RETURN

ml.name, m2.name
[Francis et al. 2018; https://www.opencypher.org]

EE'}';;E‘S”’” Information Systems Institute, Software Engineering Department 8

https://www.opencypher.org/

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

JOQASSISTANT /QAssistant
— Scans software artifacts and stores scn |l Pugine
them in a Neo4j graph database
— Analyzes and modifies the graph Command :
data with rules Maven Anabvze [y Fluaine
— Constraints to identify violations ’
— Concepts to aggregate, enrich, Repert oy Fleais
and filter

— Create reports
— Can be executed with Maven or from the command line

— Extendable through plugins, for example, Java, Jira, GitHub-
Issues, JaCoCo scanner

[https://jgassistant.org; https://softvis-research.github.io/jgassistant-plugins]

HE'T;‘ZJEESHN Information Systems Institute, Software Engineering Department 9

https://jqassistant.org/
https://softvis-research.github.io/jqassistant-plugins

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

KIEKER PLUGIN

— Plugin for jQAssistant to scan and analyze event-based
software traces

— Published on GitHub under GPL-3.0

Kieker traces
(*.dat, *.map)

Y

S
Kieke(:?rr;ces —7/Kieker records/L) Create Kieker graph

Kieker graph Apply Call & depen-
rules dency graphs

[https://github.com/softvis-research/jqa-kieker-plugin]

HET;‘{,E(?S'TN Information Systems Institute, Software Engineering Department 10

https://github.com/softvis-research/jqa-kieker-plugin

——— SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

KIEKER GRAPH SCHEMA

controllerName: String
experimentld: int
fileName: String
hostname: String
loggingTimestamp: long
numberOfRecords: int
timeOffset: int

timeUnit: String
version: String

timestamp: long
orderindex: int

name: String
signature: String

duration: long -

incomingCalls: int
outgoingCalls: int

L1

CALL

S

DECLARES

DEPENDS_ON

traceld: long
threadld: long

{hostName: String

loggingTimestamp: long
sessionld: String

beforeTimestamp: long

|afterTimestamp: long

beforeOrderindex: int
afterOrderindex: int

|name: String

fgn: String

UNIVERSITAT
LEIPZIG

Information Systems Institute, Software Engineering Department

11

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

APPLICATION EXAMPLE

— Instrumented the Bookstore BookstoreStarter
example from the Kieker user Lrein
guide with AspectJ and activated
aspects OperationExecution
. - bookstore
and OperationCall
. Bookstore o —
— Scanned the monitored traces + searchBook ()
with the jQAssistant command - orm
. . . . CRM
line tool using the Kieker plugin T
- catalog
.Catalog
- catalog
+ getBook ()

[http://kieker-monitoring.net/documentation]

{’{.‘;52‘5”’” Information Systems Institute, Software Engineering Department 12

http://kieker-monitoring.net/documentation

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

ANALYSIS

MATCH

(t:Type)-[:DECLARES]->(m:Method)
WHERE

t.fgn STARTS WITH "kieker"
RETURN

t.name as Type, m.name AS Method, m.incomingCalls AS
Calls, m.duration AS Duration ORDER BY Duration DESC

Type Method Calls Duration
"BookstoreStarter” "main” 1 55498700
"BookstoreStarter$1" "run” 5 33558300
"Bookstore" "searchBook" 5 32389100
"Catalog" "getBook" 10 30357600
"CRM" "getOffers" 5 19180500
"BookstoreStarter” "spawnAsyncRequest" 5 12639600
"BookstoreStarter" "extractNumRequestsFromArgs" 1 1280600
EET;‘ZJEESHN Information Systems Institute, Software Engineering Department 13

——— SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

i i beta
CALL GRAPH @ yriles Neodj Explorer

_} Method
getBook

Method
getOffers

The property duration of each Method node is mapped to a color gradient
from green (short) to red (long)

[https://www.yworks.com/neo4j-explorer]

EE'T,!;’FG“S”‘“ Information Systems Institute, Software Engineering Department 14

https://www.yworks.com/neo4j-explorer

——— SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

DEPENDENCY GRAPH yFiles Neodj Explorer "

DEPENDS_ON

Type
BookstoreStarter$1

DEPENDS_ON DEPENDS_O!

[https://www.yworks.com/neo4j-explorer]

EET;;’,EGRS”‘“ Information Systems Institute, Software Engineering Department 15

https://www.yworks.com/neo4j-explorer

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

CONCLUSION

— Presented a jQAssistant plugin that scans event-based
software traces and stores them as a graph in a Neo4j
database

— lllustrated feasibility and usefulness with the Bookstore
example

Analysis with an example Cypher query for aggregated
method calls

Visualization of the call and dependency graphs in the
yFiles Neo4j explorer

UNIVERSITAT
LEIPZIG

Information Systems Institute, Software Engineering Department 16

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

FUTURE WORK

— Extend the plugin to scan further record types, for
example, state-based records

— The plugin can be used as a blueprint to contribute a
Kieker writer for graph databases

{’{.‘;X.E;‘S'T’” Information Systems Institute, Software Engineering Department

17

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

REFERENCES

— S. Diehland A. C. Telea. “Multivariate Graphs in Software Engineering®“. In: Multivar.
Netw. Vis. Dagstuhl Semin. #13201 Dagstuhl Castle, Ger. May 12-17, 2013 Revis.
Discuss. Ed. by A. Kerren, H. C. Purchase, and M. O. Ward. Vol. 8380. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2014. Chap. 2,
pp. 13-36.

— N. Francis et al. “Cypher: An Evolving Query Language for Property Graphs”. In:
ACM SIG-MOD Int. Conf. Manag. Data. 2018, p. 13.

— A.van Hoorn, J. Waller, and W. Hasselbring. “Kieker: A framework for application
performance monitoring and dynamic software analysis”. In: 3rd ACM/SPEC Int.
Conf. Perform. Eng. (ICPE 2012). ACM, 2012, pp. 247-248.

— R. Mller et al. “Towards an Open Source Stack to Create a Unfied Data Source for
Software Analysis and Visualization”. In: Proc. 6th IEEE Work. Conf. Softw. Vis.
Madrid, Spain: IEEE, 2018.

— M. Needham and A. E. Hodler. Graph Algorithms -Practical Examples in Apache
Spark & Neo4j. 1st ed. O'Reilly, 2019.

— J. Waller. Performance Benchmarking of Application Monitoring Frameworks. Kiel
Computer Science Series 2014/5. Department of Computer Science, Kiel University,
2014.

{’{.‘;X.E;‘S'T’” Information Systems Institute, Software Engineering Department 18

UNIVERSITAT
LEIPZIG

THANK YOU.

Richard Miller and Matteo Fischer
Information Systems Institute, Software Engineering Department

rmueller@wifa.uni-leipzig.de
@rimllr
https://github.com/softvis-research
http://softvis.wifa.uni-leipzig.de

YOG

€

mailto:rmueller@wifa.uni-leipzig.de
https://github.com/softvis-research
http://softvis.wifa.uni-leipzig.de/

