
Graph-Based Analysis and Visualization of

Software Traces

Symposium on Software Performance 2019

Würzburg, November 5, 2019

Richard Müller and Matteo Fischer

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

WHY GRAPHS?

2

[Diehl and Telea 2014, Müller et al. 2018]

 Software data naturally map to a multivariate,

compound, attributed, and time-dependent graph

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

KIEKER

 Framework to monitor, analyze, and visualize software

behavior

 Supports event-based and state-based monitoring

 Usable with Java, .NET, COBOL, and Visual Basic 6

 Provides tools

 to inspect and analyze traces

 to visualize them as UML sequence diagrams, markov

chains, dependency graphs, and trace timing diagrams

 Output writers save traces to the file system or in a

relational database

3

[van Hoorn, Waller, and Hasselbring 2012; Waller 2014; http://kieker-monitoring.net]

http://kieker-monitoring.net/

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

BUT…

 There is no output writer for a graph database

 The visualizations produced by the Kieker tools are

static images, for example,

 Deployment operation dependency graph of Bookstore

example

4

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

CONTRIBUTION

 jQAssistant plugin that scans event-based Kieker traces

and stores them as a graph in a Neo4j database

 The plugin supports application performance monitoring

and architecture discovery

 It complements existing Kieker tools

 Analysis

 Inspect and analyze traces with the graph query

language Cypher

 Visualization

 Use interactive visualizations of call and dependency

graphs

5

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

TECHNICAL BACKGROUND

6

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

NEO4J

 Native graph database to store, manage, and query

large amounts of connected data

 Models graph data with a labeled property graph

 Labels are used to classify nodes

 Relationships connect nodes, have a type, and can have a

direction

 Properties are attributes of nodes and relationships and

stored as key-value pairs

7

[Needham and Hodler 2019; https://neo4j.com]

https://neo4j.com/

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

CYPHER

 Graph query language of Neo4j

 Matches given patterns in the graph using a visual,

ASCII art-based syntax

 () node

 -[]-> directed relationship

MATCH

(m1:Method)-[CALLS]->(m2:Method)

RETURN

m1.name, m2.name

8

[Francis et al. 2018; https://www.opencypher.org]

https://www.opencypher.org/

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

JQASSISTANT

9

 Scans software artifacts and stores

them in a Neo4j graph database

 Analyzes and modifies the graph

data with rules

 Constraints to identify violations

 Concepts to aggregate, enrich,

and filter

 Create reports

[https://jqassistant.org; https://softvis-research.github.io/jqassistant-plugins]

 Can be executed with Maven or from the command line

 Extendable through plugins, for example, Java, Jira, GitHub-

Issues, JaCoCo scanner

https://jqassistant.org/
https://softvis-research.github.io/jqassistant-plugins

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

KIEKER PLUGIN

 Plugin for jQAssistant to scan and analyze event-based

software traces

 Published on GitHub under GPL-3.0

10

[https://github.com/softvis-research/jqa-kieker-plugin]

https://github.com/softvis-research/jqa-kieker-plugin

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

KIEKER GRAPH SCHEMA

11

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

APPLICATION EXAMPLE

12

[http://kieker-monitoring.net/documentation]

 Instrumented the Bookstore

example from the Kieker user

guide with AspectJ and activated

aspects OperationExecution
and OperationCall

 Scanned the monitored traces

with the jQAssistant command

line tool using the Kieker plugin

http://kieker-monitoring.net/documentation

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

ANALYSIS

13

MATCH
(t:Type)-[:DECLARES]->(m:Method)

WHERE
t.fqn STARTS WITH "kieker"

RETURN
t.name as Type, m.name AS Method, m.incomingCalls AS
Calls, m.duration AS Duration ORDER BY Duration DESC

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

CALL GRAPH

14

[https://www.yworks.com/neo4j-explorer]

The property duration of each Method node is mapped to a color gradient

from green (short) to red (long)

https://www.yworks.com/neo4j-explorer

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

DEPENDENCY GRAPH

15

[https://www.yworks.com/neo4j-explorer]

https://www.yworks.com/neo4j-explorer

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

CONCLUSION

 Presented a jQAssistant plugin that scans event-based

software traces and stores them as a graph in a Neo4j

database

 Illustrated feasibility and usefulness with the Bookstore

example

 Analysis with an example Cypher query for aggregated

method calls

 Visualization of the call and dependency graphs in the

yFiles Neo4j explorer

16

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

FUTURE WORK

 Extend the plugin to scan further record types, for

example, state-based records

 The plugin can be used as a blueprint to contribute a

Kieker writer for graph databases

17

SSP 2019 | Graph-Based Analysis and Visualization of Software Traces

Information Systems Institute, Software Engineering Department

REFERENCES

 S. Diehl and A. C. Telea. “Multivariate Graphs in Software Engineering“. In: Multivar.

Netw. Vis. Dagstuhl Semin. #13201 Dagstuhl Castle, Ger. May 12-17, 2013 Revis.

Discuss. Ed. by A. Kerren, H. C. Purchase, and M. O. Ward. Vol. 8380. Lecture

Notes in Computer Science. Cham: Springer International Publishing, 2014. Chap. 2,

pp. 13-36.

 N. Francis et al. “Cypher: An Evolving Query Language for Property Graphs”. In:

ACM SIG-MOD Int. Conf. Manag. Data. 2018, p. 13.

 A. van Hoorn, J. Waller, and W. Hasselbring. “Kieker: A framework for application

performance monitoring and dynamic software analysis”. In: 3rd ACM/SPEC Int.

Conf. Perform. Eng. (ICPE 2012). ACM, 2012, pp. 247-248.

 R. Müller et al. “Towards an Open Source Stack to Create a Unfied Data Source for

Software Analysis and Visualization”. In: Proc. 6th IEEE Work. Conf. Softw. Vis.

Madrid, Spain: IEEE, 2018.

 M. Needham and A. E. Hodler. Graph Algorithms -Practical Examples in Apache

Spark & Neo4j. 1st ed. O'Reilly, 2019.

 J. Waller. Performance Benchmarking of Application Monitoring Frameworks. Kiel

Computer Science Series 2014/5. Department of Computer Science, Kiel University,

2014.

18

THANK YOU.

Richard Müller and Matteo Fischer

Information Systems Institute, Software Engineering Department

rmueller@wifa.uni-leipzig.de

@rimllr

https://github.com/softvis-research

http://softvis.wifa.uni-leipzig.de

19

mailto:rmueller@wifa.uni-leipzig.de
https://github.com/softvis-research
http://softvis.wifa.uni-leipzig.de/

