Experiences from Building the Open Database Performance Ranking with benchANT

13th Symposium on Software Performance 2022

Daniel Seybold, Jörg Domaschka
benchANT | Ulm University
Advances of **Data Management Technologies** for Data-intensive Applications

- **Web 2.0**
- **Big Data**
- **IoT**

- Physical resources
- Elastic resources

- RDBMS
- NoSQL
- NewSQL
Advances of **Database Technologies** for Data-intensive Applications

Cloud resources have become the preferred solution to operate DBMS

The idea of “one-size-fits-all” is over

DBaaS reached mainstream and serverless DBaaS might be the future

2 Stonebraker, Michael, and Uğur Çetintemel. “One size fits all” an idea whose time has come and gone.” Making Databases Work: the Pragmatic Wisdom of Michael Stonebraker. 2018
Comparing **Databases**

How to get the required data?

- **Feature Set**
- **Usability**
- **Tooling**
- **Data Mining**
- **Costs**
- **Performance**
- **Scaling**
Promises of **Database Providers**

Couchbase

Unparalleled **performance** at scale

PostgreSQL is a powerful, open source object-relational database system with over 30 years of active development that has earned it a strong reputation for reliability, feature robustness, and performance.

TIMESCALE

Accelerated performance

Achieve 10-100x faster queries than PostgreSQL, InfluxDB, and MongoDB. Native optimizations for time-series.

Influxdata

A **high-performance** time series engine

GridDB

High Performance

Utilizing an in-memory data architecture — along with superb parallel processing and minimal overhead — grants benchmark shattering performance.

SingleStore

Speed

Accelerate time to insight with a database built for ultra fast ingest and high performance queries

Cassandra

Performant

Cassandra consistently outperforms popular NoSQL alternatives in benchmarks and real applications, primarily because of fundamental architectural choices.
Is Database **Benchmarking** still important?

“Benchmarks tremendously helped move forward the database industry and the database research community.

Moreover, without the development of appropriate benchmarking and data sets, a fair comparison ... will not be feasible. Benchmarking in the cloud environment also presents unique challenges since differences in infrastructure across cloud providers makes apples to apples comparison more difficult. A closely related issue is reproducibility of performance results in database publications.” -- Seattle Report on Database Research 2022

¹Abadi, Daniel, et al. "The seattle report on database research." ACM SIGMOD Record (2022)
Reproducible Cloud Database Benchmarking

- scientific guidelines for reproducible cloud benchmarking
- scientific guidelines for reproducible cloud-hosted database benchmarking
- leading database and performance engineering conferences enforce available and reproducible benchmarking data sets (VLDB, SIGMOD, ICPE, ...)

BUT: Leznik et al. show that only a very limited number of performance related research results release their benchmark results as open data sets

Experiences from Building a Global Database **Performance** Ranking

How to ensure a fully transparent and reproducible global database performance ranking?

Which insights can you get out of the global database performance ranking?
Requirements for a **Reproducible and Transparent** Cloud Database Ranking

- requirements are derived from the scientific guidelines for cloud and database benchmarking
- imposed by cloud and database providers
- R1: provide raw and aggregated performance data
- R2: provide dynamic configurations for cloud, database and workload domain
- R3: provide monitoring data for all involved components
- R4: enable a performance audit -> which benchmark step X is executed at time T^x
benchANT Background
End-to-end Benchmark Automation with Mowgli

- fully automated benchmarking process
- guaranteed transparency by reproducibility
- comprehensive data sets
Automating **Performance & Scalability** Evaluations

From Mowgli to benchANT — Benchmarking-as-a-Service

Mowgli Framework

Evaluation Designer
Evaluation Specification
Evaluation Execution
Multi-objective Analysis
Analytics Dashboard
From Mowgli to benchANT — Benchmarking-as-a-Service
From Mowgli to benchANT — Benchmarking-as-a-Service

Mowgli Framework

Evaluation Designer

Evaluation Specification

Evaluation Execution

Multi-objective Analysis

Analytics Dashboard

start evaluation
allocate resources
deploy & configure DBMS cluster
select & configure benchmark
execute workload
release resources
process evaluation objective
evaluation finished
Performance Insights

https://benchant.com/ranking/database-ranking
Insights: Database Performance (YCSB read-write workload)

<table>
<thead>
<tr>
<th>RANK</th>
<th>DATABASE</th>
<th>CLOUD</th>
<th>THROUGHPUT</th>
<th>READ LATENCY (ms)</th>
<th>WRITE LATENCY (ms)</th>
<th>MONTHLY COSTS ($)</th>
<th>THROUGHPUT (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PostgreSQL x75</td>
<td>AWS</td>
<td>94,976</td>
<td>2.7</td>
<td>12.1</td>
<td>178</td>
<td>194.50</td>
</tr>
<tr>
<td>2</td>
<td>Cassandra 4.0.0</td>
<td>AWS</td>
<td>29,600</td>
<td>36.2</td>
<td>2.1</td>
<td>178</td>
<td>166.70</td>
</tr>
<tr>
<td>3</td>
<td>PostgreSQL</td>
<td>AWS</td>
<td>23,489</td>
<td>5.6</td>
<td>14.8</td>
<td>323</td>
<td>72.70</td>
</tr>
<tr>
<td>4</td>
<td>Sybase v4.1</td>
<td>AWS</td>
<td>20,871</td>
<td>26.7</td>
<td>4.6</td>
<td>178</td>
<td>117.50</td>
</tr>
<tr>
<td>5</td>
<td>MySQL</td>
<td>AWS</td>
<td>17,820</td>
<td>31.2</td>
<td>2.3</td>
<td>178</td>
<td>98.70</td>
</tr>
<tr>
<td>6</td>
<td>MongoDB</td>
<td>AWS</td>
<td>15,580</td>
<td>3.5</td>
<td>20.4</td>
<td>178</td>
<td>87.60</td>
</tr>
<tr>
<td>7</td>
<td>Oracle Community Server</td>
<td>AWS</td>
<td>11,799</td>
<td>2.9</td>
<td>25.7</td>
<td>178</td>
<td>66.40</td>
</tr>
<tr>
<td>8</td>
<td>Microsoft SQL Server</td>
<td>AWS</td>
<td>7,425</td>
<td>19.6</td>
<td>40.3</td>
<td>178</td>
<td>41.80</td>
</tr>
<tr>
<td>9</td>
<td>Oracle Database 13.7.0</td>
<td>AWS</td>
<td>3,182</td>
<td>0.7</td>
<td>87.2</td>
<td>178</td>
<td>17.92</td>
</tr>
</tbody>
</table>
Insights: Database Scalability (YCSB read-write workload)

<table>
<thead>
<tr>
<th>RANK</th>
<th>DATABASE</th>
<th>CLOUD</th>
<th>THROUGHPUT [ops/s]</th>
<th>READ LATENCY [ms]</th>
<th>WRITE LATENCY [ms]</th>
<th>MONTHLY COSTS [$]</th>
<th>THROUGHPUT PER COST [ops/$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cassandra Apache v4.0.0</td>
<td>AWS large</td>
<td>139,171</td>
<td>10.8</td>
<td>10.6</td>
<td>3,089</td>
<td>45.10</td>
</tr>
<tr>
<td>2</td>
<td>Cassandra Apache v4.0.0</td>
<td>AWS large</td>
<td>62,163</td>
<td>16.1</td>
<td>4.8</td>
<td>1,030</td>
<td>60.40</td>
</tr>
<tr>
<td>3</td>
<td>Cassandra Apache v4.0.0</td>
<td>AWS medium</td>
<td>25,254</td>
<td>26.4</td>
<td>4.7</td>
<td>533</td>
<td>47.40</td>
</tr>
<tr>
<td>4</td>
<td>Cassandra Apache v4.0.0</td>
<td>AWS medium</td>
<td>20,871</td>
<td>26.7</td>
<td>4.6</td>
<td>178</td>
<td>117.50</td>
</tr>
<tr>
<td>5</td>
<td>Cassandra Apache v4.0.0</td>
<td>AWS medium</td>
<td>12,312</td>
<td>24.9</td>
<td>4.4</td>
<td>95</td>
<td>129.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RANK</th>
<th>DATABASE</th>
<th>CLOUD</th>
<th>THROUGHPUT [ops/s]</th>
<th>READ LATENCY [ms]</th>
<th>WRITE LATENCY [ms]</th>
<th>MONTHLY COSTS [$]</th>
<th>THROUGHPUT PER COST [ops/$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ScyllaDB v4.5.1</td>
<td>AWS large</td>
<td>204,405</td>
<td>4.9</td>
<td>5.4</td>
<td>3,089</td>
<td>66.20</td>
</tr>
<tr>
<td>2</td>
<td>ScyllaDB v4.5.1</td>
<td>AWS large</td>
<td>50,621</td>
<td>4.2</td>
<td>3.4</td>
<td>1,030</td>
<td>49.20</td>
</tr>
<tr>
<td>3</td>
<td>ScyllaDB v4.5.1</td>
<td>AWS medium</td>
<td>18,646</td>
<td>6.8</td>
<td>2.2</td>
<td>533</td>
<td>35.00</td>
</tr>
<tr>
<td>4</td>
<td>ScyllaDB v4.5.1</td>
<td>AWS medium</td>
<td>17,529</td>
<td>31.2</td>
<td>2.3</td>
<td>178</td>
<td>98.70</td>
</tr>
<tr>
<td>5</td>
<td>ScyllaDB v4.5.1</td>
<td>AWS medium</td>
<td>11,708</td>
<td>42.4</td>
<td>2.1</td>
<td>95</td>
<td>123.50</td>
</tr>
</tbody>
</table>
Insights: IaaS Resource Performance & Costs

<table>
<thead>
<tr>
<th>RANK</th>
<th>DATABASE</th>
<th>CLOUD</th>
<th>THROUGHPUT</th>
<th>READ LATENCY</th>
<th>WRITE LATENCY</th>
<th>MONTHLY COSTS</th>
<th>THROUGHPUT PER COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PostgreSQL v13</td>
<td>Alibaba Cloud</td>
<td>21.652</td>
<td>3.1</td>
<td>10.3</td>
<td>96</td>
<td>224.40</td>
</tr>
<tr>
<td>2</td>
<td>PostgreSQL v13</td>
<td>IONOS Cloud</td>
<td>20.834</td>
<td>7.1</td>
<td>9.2</td>
<td>118</td>
<td>176.00</td>
</tr>
<tr>
<td>3</td>
<td>PostgreSQL v13</td>
<td>AWS</td>
<td>19.447</td>
<td>3.0</td>
<td>8.8</td>
<td>95</td>
<td>205.10</td>
</tr>
<tr>
<td>4</td>
<td>PostgreSQL v13</td>
<td>MS Azure</td>
<td>8.622</td>
<td>1.7</td>
<td>14.8</td>
<td>87</td>
<td>99.50</td>
</tr>
</tbody>
</table>
Insights: **DBaaS Performance** (YCSB read-write workload)
Benchmarking Data Structure
Data Set Structure

- **R1**: provide raw and aggregated performance data
 - Raw performance data for the load and run phase is provided as time-series and aggregated

- **R2**: provide dynamic configurations for cloud, database and workload domain
 - Configurable benchmark parameters are defined in a model (`evaluationScenario.json`)
 - Cloud & VM & database configurations are collected

- **R3**: provide monitoring data for all involved components
 - System metrics for database and benchmark instances are collected

- **R4**: enable a performance audit -> which benchmark step X is executed at time T
 - A task execution log for all executed benchmark steps is provided (`airflowTaskInstanceDetails.json`)
Data Set Structure

- All data is available on GitHub: https://github.com/benchANT/database-ranking
- Reproducibility of the results is validated by multiple database providers.
- Validation was carried out by using the benchANT platform and by executing the benchmarks manually based on the publicly available data sets.
Conclusion

- Database benchmarking is still a highly relevant task to advance database research while cloud computing adds another level of complexity.
- Database benchmarking needs to ensure reproducible and transparent data sets, currently only a limited number of benchmarking studies follow these requirements.
- Based on a global database performance ranking, we provide a reference data set structure for reproducible and transparent performance results.
- Reproducibility is validated by multiple database providers.
- Comprehensive performance data sets are the foundation for advanced database research, such as configuration auto-tuning.
Thank you!

Daniel Seybold
benchANT | daniel.seybold@benchant.com