
On the Validity of Performance Antipatterns at Code Level

David Georg Reichelt
Universität Leipzig

dg.reichelt@uni-leipzig.de

Stefan Kühne
Universität Leipzig

kuehne@uni-leipzig.de

Wilhelm Hasselbring
Universität Kiel

hasselbring@email.uni-kiel.de

Abstract

Performance antipatterns at code level should be
avoided to assure good application performance. Per-
formance antipatterns avoidance is hard, since it re-
quires up-to-date knowledge of these antipatterns.
Common lists of antipatterns, like the performance
rules of the static code checker PMD, only contain
limited information about versions and circumstances
where the performance antipatterns are valid.

We close this gap by prodiving a suite of 30 perfor-
mance benchmarks. Each of this benchmarks checks
whether the performance antipattern is measurable in
Java 6, 7, 8, 11 and 12. We find that two of the 30
performance checks are not valid in the current Open-
JDK 12.

1 Introduction

Performance antipatterns, i.e. patterns of non-
optimal implementations at code level and their re-
spective solutions, are frequently used in software de-
velopment. By avoiding antipatterns and applying the
solutions of the antipatterns, developers do not need
to measure implementation alternatives. A prerequi-
site for this usage is that antipatterns are valid in each
context. Therefore, a valid antipatterns non-optimal
implementation can not be better than the antipat-
terns solution in any use case.

Unfortunately, the validity of antipatterns changes
between Java versions: In versions prior to Open-
JDK 6u21, converting a List to an array using
toArray(T[] a) was faster when the array a had the
size of the List. Starting with OpenJDK 6u21, due
to internal optimizations inside of OpenJDK, call-
ing toArray with an array a of length zero became
faster. The toArray-change is well-known and is al-
ready widely discussed.1

Other performance antipatterns in Java have been
less researched. This is a problem, since they may also
change between versions. If performance antipattern
are outdated, the developers will change their code
without positive effect on performance. Moreover, if
the non-optimal solution of an antipattern became op-
timal in some or all cases, like in the toArray-change,
avoiding the antipattern reduces the overall perfor-
mance.

1https://shipilev.net/blog/2016/arrays-wisdom-ancients/

The tool PMD contains 30 performance checks.2

Only two of them contain version information:
The discussed OptimizableToArrayCall and Avoid-
FileStream, which was introduced due to updates in
the java.nio-API in Java 7.

In this paper, we present (1) a benchmark suite ca-
pable of validating PMDs performance antipatterns at
code level and (2) the results of using this benchmark
suite with current Java versions.

The remainder of this paper presents the bench-
marks (Section 2), the measurement setup and results
(Section 3) and related work (Section 4). Finally, a
summary is given (Section 5).

2 Benchmarks

Our goal is to measure whether the performance of
an antipattern’s occurrence and the antipattern’s so-
lution occurrence differs. Therefore, we define one
workload, which is executed once using the antipat-
tern (method name testBad) and once without it
(method name testGood). Our benchmarks hence do
not test the full gamut of usages of the antipatterns.

We solely consider time consumption. Our bench-
marks may find that (1) testGood is faster than
testBad, (2) testGood and testBad are equally fast
or (3) testGood is slower than testBad.

If we find that testGood is faster than testBad

(3), the antipattern is invalid: Since there is one us-
age of the pattern which has good performance, it
cannot be assumed in general that the pattern should
be avoided. If we find that testGood is faster (1)
than or equally fast (2) as testBad, we cannot make
a definitive conclusion about the antipattern: There
might be workloads which disprove the antipattern.

For our benchmarks, we need to define the mea-
surement and the analysis of the measured values.

Measurement The benchmarks are implemented
using the Java microbenchmarking framework jmh.3

It automates the repetition of JVM starts and work-
load executions, which are necessary to obtain statis-
tically reliable mearement results [2]. Listing 1 shows
an example of an benchmark: The benchmark mea-
suring the AddEmptyString-check. In the antipattern
version, an int is converted to a String by adding

2https://pmd.github.io/latest/pmd rules java performance.html
3Java Measurement Harness,

https://openjdk.java.net/projects/code-tools/jmh/



an empty String to it. In the solution version, the
conversion is done using Integer.toString.

Listing 1: Example Benchmark

@State(Scope.Benchmark)

public class AddEmptyStringBenchmark {

[..] Random random=new Random ();

private int value = random.nextInt ();

@Benchmark

public String testGood () {

String s = Integer.toString(value);

return s;

}

@Benchmark

public String testBad () {

String s = "" + value;

return s;

}

}

Analysis After the execution of the benchmarks,
jmh outputs are saved as text and parsed. To de-
rive whether there is a difference between two sets of
JVM executions, we use the two-sided t-test, which is
efficient for finding performance changes [9].

Our benchmarks are available in our repository.4

3 Results

We measured on 4 machines with i7-4770 CPU @
3.40GHz, 16 GB RAM and Ubuntu 18.04 whether per-
formance antipatterns persisted between OpenJDK
6.0 41, 7.0 201, 8.0 222, 11.0.4 and 12.0.2. We omit-
ted Java 9 and 10, since these intermediary versions
were supported less than a year and are not supported
anymore. We used 99% confidence level for the two-
sided t-test, 30 JVM forks and 5 (warmup) iterations
á 10 seconds for every benchmark. To use repeatably
the same execution environment, Docker containers
are defined for every researched Java version. Since
packaged versions of OpenJDK 6 and 7 are not main-
tained anymore, we use Ubuntu 12.04 and Ubuntu
14.04 for providing these OpenJDK versions.

Table 1 shows which performance antipatterns can
be reproduced in different OpenJDK versions.5 Re-
sults in parenthesis mark small differences. While
they are considered a significant difference by t-test,
the relative difference between the measurements is
below 2%. Therefore, practical impact of using or re-
moving the antipatterns may be low. Hyphen marks
no difference by t-test.

Our results show that several optimizations have
been or are still wrong, i.e. blindly applying
them could slowdown a software. In the follow-
ing, we will describe the two examples where an-
tipatterns are more than 2% faster in latest Open-

4https://github.com/DaGeRe/pmd-check
5All measurement results are available in

https://zenodo.org/record/3364562#.XU2LMvzRY5k

Benchmark 6 7 8 11 12 13
AddEmptyString × × × ×

√ √

AppendCharacterWithChar
√ √ √ √

(×)
√

AvoidFileStream
√ √ √

(×) (
√
)

BigIntegerInstantiation (
√
)
√ √ √ √ √

ConsecutiveLiteralAppends
√ √ √

× × ×
OptimizableToArrayCall ×

√ √ √ √ √

RedundantFieldInitializer (
√
) (×) (×) (

√
) (
√
) (
√
)

SimplifyStartsWith
√

(
√
) (
√
) (×) (

√
) (
√
)

StringInstantiation (
√
) (
√
) (
√
) (
√
) (×) -

StringToString
√ √

(×) (
√
) (
√
) -

TooFewBranchesForASwitch (
√
) (
√
) (×) (×) (

√
) (
√
)

UseArrayListInsteadOfVector
√ √

× × × ×
UseIndexOfChar ×

√ √ √ √ √

Table 1: List of not Fully Reproducibly Antipatterns
in Different OpenJDK versions.

JDK 13: ConsecutiveLiteralAppendsBenchmark

and UseArrayListInsteadOfVector.

ConsecutiveLiteralAppends: The rule suggests
to append String entities to an StringBuilder using
one call to append, instead of using multiple calls for
constructing the same String. For example, if the
String "Hello World" should be added, this should
be done by .append("Hello World") instead of
.append("Hello").append(" ").append("World").
This example is also used in our benchmark.

In OpenJDK 11 and later, byte arrays are used
to save data of a StringBuffer. When using
only one append call, the System.arraycopy on
the byte array is executed by calling the runtime
stub jbyte_disjoint_arraycopy, which makes use
of available CPU features for speeding up copying.
When using multiple append calls, the used Strings
in our example are so small that they are moved di-
rectly by mov-calls. In contrary, for copying the larger
byte array the runtime stub is used. In theory, the
usage of the runtime stub should speed up the process;
using our concrete parameters, it slows down the pro-
cess. On a lower level, this can be reproduced by copy-
ing bytes: Copying eleven bytes ("Hello World")
from one array to another is slower than copying five
bytes ("Hello"), than one byte (" ") and than five
bytes ("World") to an 16 byte sized array.

In the majority of cases, using one append is faster.
Nevertheless, if the performance of append is crucial,
its performance should be measured instead of blindly
applying the antipatterns solution.

UseArrayListInsteadOfVector: The rule sug-
gests to use ArrayList instead of Vector, since
Vector is synchronized and therefore slower. If el-
ements are added to ArrayList or Vector and the
underlying array is too small, the array is grown us-
ing System.arraycopy. By factorial experiments, we
found that if a class ClassA has a field with array type
which is copied by System.arraycopy, the use of mul-
tiple instances of ClassA may result in performance
degradation. This hence is no problem in ArrayList

but an optimization problem in the JVM. Neverthe-

2



less, replacing Vector by ArrayList may result in a
performance regression if this effect is triggered.

Future implementations may change which imple-
mentation has the best performance again. Never-
theless, if an application should yield optimal perfor-
mance in current OpenJDK, ArrayList should only
be used instead of Vector after comparing the real
world execution. A rule of thumb could be that ele-
ments are less often read than added.

4 Related Work

The definition of performance antipatterns have been
researched in the context of (1) empirical found an-
tipatterns, and (2) systematic analysis of (2a) software
code and (2b) documentation repositories.

The work of Smith and Williams [1] provide an em-
pirical collection of performance antipatterns. They
focus on architectural level and are applicable to any
programming language and paradigm, but illustrated
by J2EE examples. Occurences of the problems may
be found by systematic experiments [4]. Various
blogs6 provide Java antipatterns. Both, their valid-
ity and their up-to-dateness, are not researched.

Systematic analysis of software code repositories
analyzes the code itself or executes measurement by
analysis of the code. Analyzes of the code itself cur-
rently defines special antipattern types, e.g. concur-
rency issues [5, 6]. If measurements are executed, the
workload needs to be defined. It is possible to use
existing benchmarks [7], generate benchmarks [5] or
transform existing unit tests [9].

Documentation analysis uses bug tracker and com-
mit comments for defining performance antipattern.
There are language-specific [8] and language-agnostic
[3] works. After defining antipatterns, the works fix
occurences of the bugs which were unknown before.

Both, work analyzing code repositories and work
analyzing documentation repositories, define classes
problems, which are mostly antipatterns. Some of
them are language specific. Changes, which appear
due to language updates, were not researched so far.

5 Summary and Future Work

We described a benchmark suite capable of evaluating
the validity of performance antipatterns in different
Java versions. We found that, among the 30 antipat-
terns defined in PMD, two are not valid in the newest
OpenJDK version 12. To avoid wrong antipattern us-
age, we believe that a continous approach for validat-
ing performance antipatterns should be established.
This could be done by using and extending our bench-
mark suite. It could further be used to benchmark the
same antipatterns with other JVM implementations,
e.g. Oracles HotSpot JVM.

Furthermore, developers should not rely solely on
performance antipatterns. Instead, measuring the

6E.g. https://stackify.com/java-performance-tuning/

performance in every version using continous tests
and evaluating the performance at code level, e.g. us-
ing PeASS [10], would facilitate using performance-
optimal implementations.

Acknowledgements

This work was funded by the German Federal Min-
istry of Education and Research within a PhD schol-
arship of Hanns Seidel Foundation. Computations for
this work were done with resources of Leipzig Univer-
sity Computing Centre.

References

[1] C. U. Smith and L. G. Williams. “More new
software performance antipatterns: Even more
ways to shoot yourself in the foot”. In: CMG
Conference. Citeseer. 2003, pp. 717–725.

[2] A. Georges, D. Buytaert, and L. Eeckhout. “Sta-
tistically rigorous java performance evaluation”.
In: ACM SIGPLAN Notices 42.10 (2007).

[3] A. Nistor, T. Jiang, and L. Tan. “Discover-
ing, reporting, and fixing performance bugs”. In:
MSR 2013. IEEE Press. 2013, pp. 237–246.

[4] A. Wert, J. Happe, and L. Happe. “Supporting
swift reaction: Automatically uncovering per-
formance problems by systematic experiments”.
In: Proceedings of the 2013 ICSE. IEEE Press.
2013, pp. 552–561.

[5] M. Pradel, M. Huggler, and T. R. Gross.
“Performance regression testing of concurrent
classes”. In: Proceedings of the 2014 ISSTA.
ACM. 2014.

[6] R. Gu et al. “What change history tells us about
thread synchronization”. In: Proceedings of the
2015 10th Joint Meeting on Foundations of Soft-
ware Engineering. ACM. 2015, pp. 426–438.

[7] J. P. Sandoval Alcocer, A. Bergel, and M. T.
Valente. “Learning from Source Code History
to Identify Performance Failures”. In: Proceed-
ings of the 7th ACM/SPEC on ICPE. ICPE ’16.
Delft, The Netherlands: ACM, 2016, pp. 37–48.

[8] M. Selakovic and M. Pradel. “Performance is-
sues and optimizations in javascript: an empir-
ical study”. In: Proceedings of the 38th ICSE.
ACM. 2016, pp. 61–72.

[9] D. G. Reichelt and S. Kühne. “How to De-
tect Performance Changes in Software His-
tory: Performance Analysis of Software System
Versions”. In: Companion of the ACM/SPEC
ICPE. ACM, 2018, pp. 183–188.

[10] D. G. Reichelt, S. Kühne, and W. Hasselbring.
“PeASS: A Tool for Identifying Performance
Changes at Code Level”. In: Proceedings of the
33rd ACM/IEEE ASE. (in press). ACM. 2019.

3


	Introduction
	Benchmarks
	Results
	Related Work
	Summary and Future Work

