
Towards Understanding the Performance of Distributed Database

Management Systems in Volatile Environments

Jörg Domaschka
joerg.domaschka@uni-ulm.de

Ulm University, Ulm, Germany

Daniel Seybold
daniel.seybold@uni-ulm.de

Ulm University, Ulm, Germany

Abstract

Cloud computing provides scalability and elasticity
mechanisms on resource level and has become the
preferred operational model for many applications.
These, in turn, are based on distributed architectures
trusting that this leads to scalability and elasticity
and hence, good performance.

Many applications rely on one or multiple database
management systems (DBMS) as storage backends in
order to manage their persistent state. Hence, the se-
lection of a DBMS for a specific use case is crucial
for performance and other non-functional properties.
Yet, the choice is cumbersome due to the large num-
ber of available systems and the many impact factors
ranging from the size of virtual resources, the type of
the DBMS, and its architecture and scaling factor.

In this paper, we summarise our experiences with
performance evaluation for cloud-hosted DBMS in or-
der to find well-suited configurations for specific use
cases. We demonstrate that the overall performance
of a distributed DBMS depends on three major do-
mains (workload, cloud environment, and DBMS)
with various parameters for each dimension.

1 Introduction

Database Management Systems (DBMS) are a major
building block of today’s applications. They sit at the
heart of any Web-business application, of many types
of IoT applications, including geographically spread-
out installations such as Smart Cities and Industry 4.0
sites; they are the backbone of serverless application.

Currently there are more than 200 distributed
DBMS available as commercial and open source prod-
ucts that all claim to be reliable, scalable, and elastic
while providing superior performance [7]. Yet, anal-
yses of existing systems show that they differ a lot
and suggest that the DBMSs need to be carefully se-
lected based on the use case characteristics [3]. Only
then can the DBMS deliver sufficient throughput and
latency while at the same time satisfying potential
non-functional requirements such as availability.

Cloud computing, virtualisation, and containeriza-
tion offer appealing approaches to host DBMS in par-
ticular as they offer a natural way to quickly provi-
sion compute, storage and networking resources, and

hence, realise the technical underpinning for dynamic
scaling and adaptations. On the downside, relying on
such resources introduces volatility in service quality
as many critical aspects of the infrastructure are no
longer in the hands of the DBMS operator. Further,
there is an overwhelming selection of different cloud
offerings with different impact on the performance of
DBMS’s service quality.

Thus, the decision for a cloud-hosted DBMS re-
quires an understanding of the DBMS domain—which
DBMS provides which features and what feature has
which impact on performance; the cloud domain—
which cloud configuration has which impact on perfor-
mance; and finally the workload domain—what is the
read/write/update ratio facing the DBMS and what
consistency and reliability demands exist.

In this paper, we summarise the key insights gained
over a series of papers [4, 6, 8] investigating the impact
of the overall problem over the DBMS and the cloud
domain. Due to limitations of space, we leave out the
workload domain, as this is not something that can be
influenced by an operator. Understanding the work-
load is hence a prerequisite for the selection process
and benchmarking done in that process [5].

2 DBMS Impact Factors

The performance of non-distributed applications is
mostly determined by the capabilities of the particular
hardware (CPU, memory, I/O) running the applica-
tion. For distributed applications the communication
network plays a role as well as communication proto-
cols causing e.g. queuing, drops, latency, and waiting
time. In contrast to stateless applications, stateful
applications may need to coordinate the state of their
component instances causing traffic and load that are
only mediately rooted in external workload, but are
a consequence of internal processes such as garbage
collection and consistency protocols.

In distributed DBMS (DDBMS), multiple in-
stances of a DBMS provide the client with the im-
pression of a logical DBMS. DDBMS provide two ba-
sic mechanisms to ensure scalability, availability, and
reliability: sharding and replication. Hence, when de-
signing a cloud-hosted DDBMS, the operator needs to
size the individual instances (memory, #cores, type

and amount of storage), and decide on the cluster size
(cf. the number of shards), the replication degree (cf.
reliability and availability), and read and write con-
sistency (cf. programmability and availability) [3, 8].
These decisions result in the following impact factors
for operating DDBMS.

2.1 Sharding and Scale

The use of sharding distributes the data set of the
logical DDBMS over the available DBMS instances.
Consequently, sharding increases the overall capacity
of a DDBMS when more instances are added. Shard-
ing increases the overall throughput in cases where the
workload is uniformly distributed over the shards.

2.2 Consistency and Replication

A consistency model defines in which order operations
issued from multiple users to different data tuples
may interleave. Hence, the consistency model defines
which changes to a tuple are visible to a user.

Replication creates multiple copies of a single data
tuple. This protects the tuple against data loss in
case the DBMS instance hosting the shard containing
that tuple fails. Hence, replication increases reliability
of both the DDBMS and individual tuples. Depend-
ing on consistency requirements, the use of replication
may either increase or decrease throughput. In case of
weak consistency, operations may be targeted to dif-
ferent replicas of a tuple. For strong consistency more
than one replica needs to be read/written.

The use of replicated tuples introduces the need
to keep the tuples in sync with each other. Accord-
ing to the CAP theorem, availability and consistency
are mutually dependant in any distributed and state-
ful system [1]. This leaves a continuum of possible
trade-offs which has caused an increasing heterogene-
ity in the DDBMS landscape [7]. In consequence,
many DDBMS have introduced specific configuration
options to optimize for specific use cases. Often, this
makes consistency and availability guarantees incom-
parable and evaluations even more challenging.

2.3 Resource Sizing

When operating a DDBMS, there is a trade-off be-
tween using multiple compute resources (e.g. virtual
machines) or fewer larger ones. While the overall per-
formance increases the fewer and the larger the indi-
vidual resources are, the more vulnerable the system
gets for failures. Also, replacing failed instances takes
longer when larger portions of the overall state fail
and need to be synced. Besides, these general con-
siderations, the number of compute cores influences
the parallelism in processing client requests, while the
amount of memory influences the ratio of the data set
that can reside in memory.

For storage, considerations are even more challeng-
ing due to different types of available cloud offer-
ings [2]. In IaaS clouds usually three options exist: (i)

 0

 2000

 4000

 6000

 8000

 10000

 12000

ANY ONE
3-nodes

TWO ANY ONE
5-nodes

TWO ANY ONE
7-nodes

TWO ANY ONE
9-nodes

TWO

T
h

ro
u

g
h

p
u

t
[o

p
s/
s]

avg (stddev)
max
min

Figure 1: Impact of DBMS Domain: Cassandra [8]

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

3-nodes
P-1

5-nodes
P-1

7-nodes
P-1

9-nodes
P-1

T
h

ro
u

g
h

p
u

t
[o

p
s/

s]

avg (stddev)
max
min

NONE R-1 NONE R-1 NONE R-1 NONE R-1

Figure 2: Impact of DBMS Domain: Couchbase [8]

use a virtual machine with large storage, (ii) attach
volumes to the virtual machine as block devices, (iii)
include (mount) a remote file system into the virtual
machine. Users of cloud services may further build
custom storage hierarchies from these basic services.
For instance, they may run their own volume-based
distributed file system within their virtual machines
and mount this into other virtual machines.

2.4 Examples

Figures 1 and 2 show the average throughput over
five experiments (including the standard deviation) of
three different write consistency settings for Apache
Cassandra (CA) and Couchbase (CB). While their
consistency mechanisms can not be mapped 1:1, the
applied write consistency increases from the first to
the third setting. Moreover, each plot comprises the
throughput of different cluster sizes, showing the scal-
ability of the respective DBMS under a fixed work-
load. The results clearly show that a stronger write
consistency has a significant throughput impact for
while for CA the impact is neglectable. More details
and results are available in [8].

3 Cloud Impact Factors

The performance of an application running on a
cloud infrastructure heavily depends on many cloud
provider design decisions, but also on operator design
decision as discussed in the following [6, 8].

2

 14000

 15000

 16000

 17000

 18000

 19000

 20000

 21000

 22000

 23000

P-C-L P-C-H P-VM-L P-VM-C-L

Th
ro

ug
hp

ut
 [o

ps
]

avg (stddev)
max
min

Figure 3: Impact of Cloud Resource Types [6]

3.1 Infrastructure

The maximum overall performance of a cloud-hosted
application depends on the physical hardware capa-
bilities of the cloud infrastructure including the type
of physical CPUs and storage as well as networking.
Further, it depends on configuration choices the cloud
provider has made such as the network topology; the
physical set-up of storage: SSDs vs. HDDs, hierarchi-
cal RAID systems, distributed file systems, hypercon-
verged infrastructure; etc.

Even though these aspects are mostly differenti-
ating factors between cloud providers, customers can
influence these decisions to some extent: for instance,
they can select specific virtual machine types, regions,
and availability zones that are known to be backed by
a certain type of physical hardware. Yet, even if they
are known to the clients, their impact on performance
is hard to estimate and hence mostly unclear.

3.2 Resource Types

The resource type captures the abstraction a cloud
provider offers to its customers. It defines whether
the resource provided is a bare metal server, a virtual
machine, a (Docker) container, or at an even higher
layer. This decision has a significant impact on per-
formance. The type of resource is often an immediate
consequence of choosing a particular cloud provider.

3.3 Examples

Figure 3 shows the performance of heterogenous cloud
resources based on the avg. write throughput (with
stddev.) over ten experiments of a single MongoDB
(MDB) instance deployed on the cloud resource types:
(P-C-L) physical server (P) with a MDB container
(C) using the local Overlay2 container filesystem (L);
P-C-H using the host filesystem (H) of the physical
server; P-VM-L running MDB in a VM using the VM
filesystem; P-VM-C-L running MDB in a container
on top of a VM using the local Overlay2 container
filesystem. The results point out the impact of using
Overlay2 with containers or VMs to operate DBMS.
More results and conclusions are available in [6].

4 Conclusion

This paper summarises the design space when running
distributed database management systems (DDBMS)
in (volatile) cloud environments. Using examples, we
illustrated that the overall performance (measured by
throughput) of DDBMS are dependent on the ser-
vices offered by cloud providers and the storage types
used.Even minor changes in the set-up of experiments
may have larger impact on performance. Besides these
external factors, there are huge differences between
the DDBMS themselves and the choice of a DDBMS
needs to be be well considered and measured against
the workload and application requirements.

Ongoing and future work extends the results shown
here with the consideration of non-functional require-
ments. Here, we focus on the evaluation of both scala-
bility/elasticity and availability guarantees of different
DDBMS under advanced workloads. Finally, we are
currently investigating the impact of overbooking and
noisy neighbours on the performance of DDBMS.

References

[1] E. Brewer. “CAP twelve years later: How the
”rules” have changed”. In: Computer 2 (2012),
pp. 23–29.

[2] S. Kächele et al. “Beyond IaaS and PaaS: An Ex-
tended Cloud Taxonomy for Computation, Stor-
age and Networking”. In: 2013 IEEE/ACM 6th
International Conference on Utility and Cloud
Computing. Dec. 2013, pp. 75–82.

[3] J. Domaschka, C. B. Hauser, and B. Erb. “Reli-
ability and Availability Properties of Distributed
Database Systems”. In: 2014 IEEE 18th Interna-
tional Enterprise Distributed Object Computing
Conference. Sept. 2014, pp. 226–233.

[4] D. Seybold et al. “Is elasticity of scalable
databases a myth?” In: 2016 IEEE International
Conference on Big Data (Big Data). IEEE. 2016,
pp. 2827–2836.

[5] D. Seybold and J. Domaschka. “Is Distributed
Database Evaluation Cloud-Ready?” In: Euro-
pean Conference on Advances in Databases and
Information Systems. Springer. 2017, pp. 100–
108.

[6] D. Seybold et al. “The Impact of the Storage
Tier: A Baseline Performance Analysis of Con-
tainerized DBMS”. In: European Conference on
Parallel Processing. Springer. 2018, pp. 93–105.

[7] S. Mazumdar et al. “A survey on data storage
and placement methodologies for Cloud-Big Data
ecosystem”. In: Journal of Big Data 6.1 (2019),
p. 15.

[8] D. Seybold et al. “Mowgli: Finding your way in
the DBMS jungle”. In: Proceedings of the 2019
ACM/SPEC International Conference on Per-
formance Engineering. ACM. 2019, pp. 321–332.

3

	Introduction
	DBMS Impact Factors
	Sharding and Scale
	Consistency and Replication
	Resource Sizing
	Examples

	Cloud Impact Factors
	Infrastructure
	Resource Types
	Examples

	Conclusion

