
Chaos Experimentation based on Established Risk Anal-

ysis Methods: Experiences from an Industrial Case Study

Extended Abstract

Dominik Kesim1
1 University of Stuttgart, Germany
Dominik.Kesim@gmail.com

Modern distributed systems more and more frequently adapt the microservice archi-

tectural style to design cloud-based systems [1]. Assessing the resilience of such sys-

tems can be done by leveraging fault injections on the application- and network-level

also known as resilience benchmarking. Chaos engineering is a new, yet, evolving

discipline that forces a change in the perspective of how systems are developed with

respect to their resilience. Whereas fault injection and testing approaches are said to

be binary, i.e., an assertion is made about the system that is then verified to be true or

false, chaos engineering is claimed to be exploratory [2]. The key idea is to apply

empirical experimentation in order to learn how a system behaves under turbulent

conditions by intentionally injecting failures.

Large distributed systems contain many components that are communicating and even

perhaps interacting with each other. Such dependencies increase the number of poten-

tial failures enormously [2]. Peter Deutsch’s “Seven fallacies of distributed compu-

ting” [3] are a good example of neglected failures that may occur during the operation

of distributed systems in production. From a chaos engineering perspective technolo-

gies such as Kubernetes also increase the complexity by increasing the number of

potential failures, e.g., Pods can fail, node memory space is drained.

In the scope of an industrial case study conducted as part of my Bachelor’s thesis [4],

our work provides means to identify risks and hazards by applying hazard analysis

methods known from engineering safety-critical systems to the domain of chaos engi-

neering. The case study involved five stages. The first stage focused on collecting

information about the investigated system by conducting three interviews with the

system developers and architect. In the second stage the information were processed

in order to reconstruct the architecture of the system. The result was a detailed archi-

tecture description comprising different architectural views, i.e., sequence and com-

ponent diagrams to illustrate the structure and communication of individual architec-

tural components. The third stage comprised the identification of risks by applying

three different hazard analysis methods, namely i) Fault Tree Analysis as a top-down

approach to identify root causes, ii) Failure Mode and Effects Analysis as a compo-

nent-based inspection of different failure modes, iii) and Computational Hazard and

Operations as a means to analyze the system’s communication paths. In the fourth

stage a dedicated number of chaos engineering experiments were implemented in

Chaostoolkit [4] based on the identified risks. As Chaostoolkit provides, among oth-

ers, a Kubernetes-driver, the experiments were specifically designed to target the

Kubernetes platform. In total four experiments have been derived from the findings of

2

the hazard analysis. In the fifth and last stage the derived experiments have been exe-

cuted and analyzed by applying non-parametric statistical hypothesis tests to the ob-

servations.

In this talk, I will summarize the methods, results, and lessons learned from the case

study.

References

[1] A. van Hoorn, A. Aleti, T. F. Düllmann, T. Pitakrat. “ORCAS: Efficient Resili-

ence Benchmarking of Microservice Architectures.”2018 IEEE, International Sympo-

sium on Software Reliability Engineering Workshops (ISSREW)

[2] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski, J. Reynolds, C.

Rosenthal. “Chaos Engineering.” IEEE Software 33.3 (2016)

[3] Rotem-Gal-Oz, A. (2006). Fallacies of distributed computing explained. URL

http://www. rgoarchitects. com/Files/fallacies. pdf, 20.

[4] Dominik Kesim. Assessing Resilience of Software Systems by the Application of

Chaos Engineering — A Case Study (2019). Bachelor’s Thesis, University of

Stuttgart. Submission date Sep 1, 2019. The thesis will be available under the follow-

ing URL for the reviewers right after submission:

https://drive.google.com/drive/folders/1o7Ii96QLH73c9gJ_UbEBbvWfhiRPQI71?us

p=sharing

[5] https://chaostoolkit.org/

