
Towards Testing the Performance Influence of Hypervisor Hypercall

Interface Behavior

Lukas Beierlieb, Lukas Iffländer, Samuel Kounev
{firstname}.{lastname}@uni-wuerzburg.de

University of Würzburg

Aleksandar Milenkoski
amilenkoski@ernw.de

ERNW GmbH

Abstract

With the continuing rise of cloud technology hypervi-
sors play a vital role in the performance and reliabil-
ity of current services. Hypervisors offer so-called hy-
percall interfaces for communication with the hosted
virtual machines. These interfaces require thorough
robustness to assure performance, security, and relia-
bility. Existing research focusses on finding hypercall-
related vulnerabilities. In this work, we discuss open
challenges regarding hypercall interfaces. To address
these challenges, we propose an extensive framework
architecture to perform robustness testing on hyper-
call interfaces. This framework supports test cam-
paigns and modeling of hypercall interfaces.

1 Introduction

The trend to move applications to the cloud continues
without interruption [5]. This ongoing transition from
dedicated servers to the cloud results in most services
now running in virtual environments.

Virtualization received increasing interest as a way
to reduce costs through server consolidation and to
enhance the flexibility of physical infrastructures. It
allows the creation of virtual instances of physical de-
vices called virtual machines (VMs). Hypervisors im-
plement interfaces that provide call-based connectiv-
ity to hosted VMs. One of them is the hypercall inter-
face, which allows a VM to request services from the
hypervisor. Hypercalls are software traps from a VM
to the hypervisor. They are critical for the operation
of VMs. The behavior of the hypervisor’s hypercall
interface constitutes a significant part of the virtual-
ized environment’s overall behavior. Therefore, test-
ing the performance-related aspects of this behavior
is essential. This paper focusses on such testing.

The contributions of this paper are (1) Discussions
on central open challenges when it comes to testing
performance aspects of virtualized environment be-
havior, and (2) A framework that facilitates such test-
ing and enables the addressing of these challenges. It
allows the observation and measurement of the behav-
ior of hypercall interfaces by generating and executing
tailored test campaigns. The framework is as generic
as possible. We provide an example of hypervisor-
specific details for Hyper-V.

Related work injects hypercalls in a Xen based en-
vironment [3], discusses hypercall vulnerabilities [2],
and introduces the idea of test campaings [4].

The remainder of this paper is structured as fol-
lows: Section 2 discusses key open challenges. Next,
Section 3 introduces the relevant technical back-
ground; Section 4 presents the proposed framework,
and Section 5 concludes the paper.

2 Challenges

In this section, we discuss key open challenges in test-
ing behavioral aspects of virtualized environments.
These challenges come in the form of research ques-
tions that we will address in our framework.

RQ1: How to characterize the behavior of a virtual-
ized environment? It is necessary to identify exist-
ing or develop new metrics relevant for characterizing
such behavior, to evaluate the impact of hypercall ex-
ecution.These metrics allow characterizing a baseline
behavior to detect deviations. With our framework,
we plan to identify metrics and workloads suitable for
characterizing the behavior of a virtualized environ-
ment. This characterization enables the construction
of models tailored for testing and describing relevant
behavior aspects of virtualized environments. We also
plan to investigate the development of new metrics.

RQ2: How does the virtualized environment setup im-
pact the test results? The hypervisor hosting the envi-
ronment can operate directly on top of the hardware
(i.e., a bare-metal setup) or inside a VM hosted by an-
other hypervisor (i.e., a nested virtualization setup),
to test the behavior of a given virtualized environ-
ment. The nested virtualization setup has the advan-
tage of full control over, and behavior transparency
of, the tested virtualized environment. This nesting
enables, for example, recovering from crashes caused
by tests and storing system and hypervisor states.
Such control and transparency are not readily attain-
able with a bare-metal setup. However, using another
hypervisor to host the virtualized environment under
test may impact test results and jeopardize represen-
tativeness. Therefore, it is essential to identify and
evaluate the extent of this impact, including identifi-
cation of the causing hypercall activities.

RQ3: How do updates impact on performance, re-



liability, and robustness? Some operating systems,
including the hosted and hosting hypervisors, are fre-
quently updated. For example, some releases of Win-
dows 10 receive monthly updates. Updates often in-
troduce new features and significant reworks of inter-
nal mechanisms. Therefore, it is crucial to evaluate
the impact on the performance, reliability, and ro-
bustness of virtualized environments.

3 Hypervisors and Robustness Testing

Hypervisors: In a non-virtualized scenario, the
hardware is managed by an operating system, provid-
ing and scheduling resource access to applications run-
ning on top. Virtualization describes the concept of
introducing an abstraction layer above the hardware.
That layer called the hypervisor or Virtual Machine
Monitor (VMM) provides a set of virtual resources,
which can form multiple virtual machines and be man-
aged by independent operating systems.

One way to classify hypervisors is their level of con-
trol over the underlying hardware. The first approach
called a Type-1 hypervisor runs directly on top of the
hardware and can utilize its full control for increased
performance. Contrary to that, Type-2 or hosted hy-
pervisors reduce the complexity by relying on underly-
ing operating systems for the hardware management.

Virtualization solutions differ by their implementa-
tion type. Full virtualization allows VMs to run the
same, unmodified operating systems used on physical
hardware, while para-virtualization requires changes
to the source code of operating systems. These mod-
ifications also allow hypervisor and VMs to interact
more efficiently, e.g., by using abstract IO interfaces
instead of emulating existing physical devices to re-
duce overhead and improve performance.

Nested virtualization describes the situation when
a hypervisor is running inside a VM of another hyper-
visor. Privileged instructions of the virtualized hy-
pervisor have to be trapped and emulated. Memory
management hardware does not provide support for
the third memory paging layer.

Hyper-V is a Type-1 x86 64 hypervisor developed
by Microsoft. To avoid limiting it to specific hard-
ware configurations and implementing countless de-
vice drivers, Hyper-V uses a microkernel-based archi-
tecture. A specialized VM called the root partition
always runs an instance of Windows on top of Hyper-
V to provide management features and device drivers.
Guest VMs can run para-virtualized if they support
it, but can also use unmodified operating systems, in
which case Hyper-V provides emulated devices. Sim-
ilar to how applications can request services from the
operating system by issuing system calls, guest oper-
ating systems can call to Hyper-V with hypercalls.

Robustness Testing: IEEE defines robustness as
”The degree to which a system or component can
function correctly in the presence of invalid inputs or
stressful environmental conditions.” [1]. Thus, ro-

bustness testing is concerned with providing unex-
pected inputs or conditions to the system under test,
while trying to detect defects. Often a model of the
interface under test is built, containing information
about required parameters, their data types, and the
tested range of possible values. This model can then
be used to generate test cases automatically.

4 Framework

The framework provides a means to test the hypercall
robustness of any desired hypervisor. As every hy-
pervisor has its unique hypercall calling convention,
it is not possible to generalize every aspect. However,
the framework is designed to implement all general-
izable steps and provide reusable interfaces for con-
sistent implementation of hypervisor-specific details.
We develop a concrete implementation for Hyper-V
alongside the generic framework.

The architecture comprises two domains: the test
generation and hypercall injection workflow and the
execution monitoring during the hypercall injection.
Fig. 1 provides a visual overview. Test campaign files
describe when hypercall injection occurs and its pa-
rameterization. JSON files define the test campaigns
allowing humans to arrange tests manually as well
as to generate tests automatically from hypercall in-
terface models. The format currently supports the
following features: (1) Hypercalls: Calling conven-
tions vary across hypervisors. Therefore, we reference
hypercalls and their parameters by their name. (2)
Order: The framework provides a means to test if
robustness problems occur when performing specified
calls in a specified sequence. (3) Integer Bounds:
Boundary data type values are a regular testing in-
put. The language supports automatic generation of
integer boundary values with regard to the size. (4)
Repetition: Single hypercalls and series of calls can
loop with a specified number of repetitions. (5) Ran-
dom: Parameter values can also be tagged to take
on random values. Our framework supports constant,
uniformly distributed, and negative-exponentially dis-
tributed random values. (6) Timing: Delays are in-
jectable between a series of hypercalls.

The framework supplies a compiler parsing the
JSON file and extracting hypercalls, delays, and loops.
A hypervisor-specific module translates hypercall and
parameter names into call codes, parameter sizes, and
offsets, calculates integer bounds values according to
data type sizes, and exports the campaign in the in-
jection module format.

The injection driver is specific to the used hypervi-
sor. It reads the specially crafted campaign file and in-
jects hypercalls in a hypervisor-specific fashion. Spe-
cial privileged instructions trigger hypercalls. Thus,
hypercalls are not injectable from userspace but have
to originate from the kernel, which limits possible im-
plementations to a Windows kernel driver. The driver
reads and performs the actions of the campaign step

2



Human-readable
Test Campaign

Injection Driver-
readable

Test Campaign

Compiler/
Expert Knowledge

Injection Driver

Test Setup

Hypercall Injection
Log File

Human-readable
Results

Performance
Monitoring

Perform Hypercall Hypercall Return

Figure 1: Framework overview

by step. An injection log file collects return and out-
put values, as well as measured execution times. A
generalized compiler can generate a human-readable
report of the test campaign execution results, using
the original campaign file, the injection log file, a
hypervisor-specific helper module, and performance
measurement data.

The second domain of the framework is concerned
with performance monitoring to detect unexpected
behavior while executing a test campaign. As stated
in RQ1, the first step is to construct a model that
describes the normal behavior. It is necessary to mea-
sure at very short intervals to capture short-term per-
formance degradation. Also, it requires investigation
whether to place the performance monitoring agent
in the injecting VM or isolated in another guest VM.
After establishing a baseline, the model needs to de-
cide which performance deviations are caused by ro-
bustness problems. Another part of the model is the
detection of crashes and failures. These could poten-
tially happen to only the injecting VM or the whole
hypervisor.

There are two alternatives for the testing setup.
One approach is to run Hyper-V directly on the hard-
ware, as shown in Fig. 2 on the left. This method has
the advantage of being a tried and true configuration.
However, in case of crashes, a physical reset has to
be triggered to reboot the system. Moreover, if the
system gets altered permanently, restoring the initial
conditions is an expensive operation.

On the other hand, Hyper-V can itself run in a vir-
tualized environment, e.g., in a KVM virtual machine,
as shown in Fig. 2 on the right. With this config-
uration, having a fully restored system for every test
campaign is easily achievable. Nested virtualization is
the preferred solution from a test execution perspec-
tive. However, RQ2 questions whether the results are
identical between bare-metal.

Naturally, every hardware configuration yields dif-
ferent performance results. This limitation requires
to determine the baseline metric values for every sin-

Hardware

Hyper-V

root
partition

guest
partition1

guest
partition2

Hardware

KVM

Hyper-V

root
partition

guest
partition1

guest
partition2

Linux

Bare-metal setup Nested-virtualization setup

Figure 2: Bare-metal and nested-virtualization setup
visualized

gle setup. However, as pointed out in RQ3, baseline
performance is also affected by software changes. Es-
pecially with Hyper-V distributed alongside Windows
OS, we want to evaluate how much our model varies
between different versions of OS builds.

5 Conclusion and Future Work

In this work, we described the open challenges re-
garding the performance influence of hypercall in-
terface behavior in three research questions. Next,
we overview the technical background regarding hy-
pervisors and Hyper-V as well as robustness testing.
We then proposed a framework architecture for hy-
percall interface robustness testing. This architec-
ture supports modeling hypercall interfaces, generat-
ing test campaigns to assert said models and validat-
ing them against new software versions. Furthermore,
the framework can execute defined tests while moni-
toring the system’s performance. Finally, we support
evaluating the results based on deviations from the
baseline characteristics.

In future work, we plan to complete the implemen-
tation of the proposed architecture for the Hyper-V
hypervisor. Next, we will execute extensive test cam-
paigns on Hyper-V’s hypercall interfaces using expert
knowledge available inside SPEC.

Acknowledgements

This work was funded by the German Research Foun-
dation (DFG) under grant No. (KO 3445/16-1).

References
[1] IEEE. “IEEE Standard Glossary of Software Engineering

Terminology”. In: IEEE Std 610.12-1990 (Dec. 1990).

[2] A. Milenkoski et al. “Experience Report: An Analysis
of Hypercall Handler Vulnerabilities”. In: International
Symposium on Software Reliability Engineering. IEEE.
2014.

[3] A. Milenkoski et al. “Evaluation of Intrusion Detection
Systems in Virtualized Environments Using Attack Injec-
tion”. In: International Symposium on Research in At-
tacks, Intrusions, and Defenses (RAID). Springer, 2015.

[4] C. F. Gonçalves, N. Antunes, and M. Vieira. “Evaluat-
ing the Applicability of Robustness Testing in Virtualized
Environments”. In: Latin-American Symposium on De-
pendable Computing (LADC). IEEE. 2018.

[5] C. Research. Public Cloud Services Market Share, Trend
And Forecast To 2027. 2019.

3


	Introduction
	Challenges
	Hypervisors and Robustness Testing
	Framework
	Conclusion and Future Work

