
Improving Batch Performance when Migrating to Microservices with

Chunking and Coroutines

Holger Knoche
Kiel University, Software Engineering Group

24118 Kiel, Germany
hkn@informatik.uni-kiel.de

Abstract

When migrating enterprise software towards microser-
vices, batch jobs are particularly sensitive to commu-
nication overhead introduced by the distributed na-
ture of microservices. As it is not uncommon for a
single batch job to process millions of data items, even
an additional millisecond of overhead per item may
lead to a significant increase in runtime.

A common strategy for reducing the average over-
head per item is called chunking, which means that in-
dividual requests for different data items are grouped
into larger requests. However, chunking is difficult to
integrate into existing batch jobs, which are tradition-
ally executed sequentially.

In this paper, we present a chunking approach
based on coroutines, and investigate whether it can
be used to mitigate the potential penalty to batch
performance during migrations to microservices.

1 Introduction

Microservices are currently a very popular style for
software architectures. This popularity is due to sev-
eral reasons, one of them being improved maintain-
ability, which previous research found to be a partic-
ularly important driver for adopting microservices in
software modernization settings [5]. Such moderniza-
tions are usually carried out in an incremental man-
ner, where new features are implemented immediately
as microservices, and old features are gradually reim-
plemented [3].

A potential pitfall of this strategy in terms of per-
formance is that the existing implementation may
have to invoke the new microservices as well. Due to
the distributed nature of microservices, this usually
means remote communication such as REST calls, for
which we measured an overhead of roughly one mil-
lisecond in our environment.

While an overhead of this magnitude may be neg-
ligible for user transactions with few invocations, it
can lead to a significant increase in runtime for high-
volume batch operations with hundreds of thousands
or even millions of invocations. This is particularly
unfortunate as batch jobs may be confined to a desig-
nated time frame, the so-called batch window, as not

to interfere with interactive applications. For a batch
job with one million invocations, an additional mil-
lisecond per invocation accumulates to about 17 min-
utes of additional runtime, which can be a significant
portion of the batch window.

A common strategy to reduce the average overhead
per invocation is to group several individual invoca-
tions into one larger “chunk” invocation, which we
refer to as chunking.1 Thus, the communication over-
head only applies once per chunk, thereby reducing
the effective overhead per individual invocation.

However, as discussed later, making effective use
of chunking in batch jobs is far from trivial. In this
paper, we present an approach based on coroutines
and evaluate to what extent this approach can help
improving batch performance when migrating to mi-
croservices.

The remainder of this paper is structured as fol-
lows: Section 2 provides background information on
batch processing and coroutines. Then, the approach
is described in Section 3. In Section 4, a short ex-
perimental evaluation is presented. Related work and
conclusions are discussed in Sections 5 and 6.

2 Background

The following paragraphs provide the necessary back-
ground information on batch processing and corou-
tines.

2.1 Batch Processing

Batch processing refers to bulk data processing tasks
without user interaction. This type of processing is
particularly suited for high-volume tasks or tasks that
need to run at given points in time, such as the end-
of-day processing at a bank or report generation. In
the following paragraphs, we briefly summarize the
relevant concepts based on the domain language from
Spring Batch [6].

A batch job is the primary runnable entity in batch
processing. Each job consists of one or more steps,
in which the actual processing takes place. The steps
are usually orchestrated by internal DSLs (e.g., Spring
Batch) or special scripting languages (e.g., the Job

1Another common name for this strategy is microbatches.



Control Language on the mainframe). These allow
for conditional execution of steps or the abortion of
the entire job if an unrecoverable error occurs.

Internally, a batch step typically consists of a main
loop iterating over an input data set, such as the result
of a database query or an input file. In the body of
the loop, each data item is processed, and the results
are written to the appropriate location.

Batch jobs can have complex dependencies (e.g.,
one job needs to run before another) or time con-
straints, which is why their execution is usually gov-
erned by automated job scheduling facilities. Typi-
cally, numerous jobs are run in parallel, while the steps
are executed sequentially, although newer frameworks
like Spring Batch also allow the parallel execution of
steps.

2.2 Coroutines

Coroutines [1] are subroutines with the ability to vol-
untarily suspend their execution (“yield”) and to later
continue at the point where they left off. When
a coroutine suspends, it frees the current execution
thread so that another coroutine may run in it. Thus,
multiple coroutines can be executed concurrently us-
ing only one or just a few threads.

The major advantage of coroutines over preemp-
tive threads is that switching from one coroutine to
another can be much cheaper in terms of performance
than a context switch from one thread to another.
Furthermore, coroutines can be implemented com-
pletely in userspace. Thus, a large number of corou-
tines can exist without occupying large amounts of
operating system resources. The major downside is
that in order for this concept to work, all coroutines
must act cooperatively at all times. If one coroutine
enters an infinite loop or invokes a thread-blocking
operation (e.g., blocking I/O), it may bring the whole
system down.

Although coroutines were already described and
implemented in the 1960s, they have only recently
gained mainstream attention for implementing soft-
ware systems that need to handle large numbers of
concurrent tasks. As a consequence, many main-
stream programming languages such as COBOL and
Java do not support them natively, as opposed some
old (e.g., Simula) and recent (e.g., Go and Kotlin)
programming languages. Since we will use Kotlin’s
coroutines in our evaluation, the relevant concepts
from Kotlin are described below.

In Kotlin, communication between coroutines is
typically realized with channels, which behave simi-
lar to bounded message queues. Coroutines sending
data into a full channel suspend automatically, as do
coroutines receiving data from an empty channel. A
coroutine may wait for data from multiple channels
at the same time by means of the select statement;
however, only data from one channel is processed at
a time.

3 Approach

As already noted in the introduction, our approach
aims at improving batch performance by grouping
multiple service invocations into one in order to reduce
the effective overhead per invocation. For instance,
instead of invoking a service individually for each cus-
tomer, we intend to invoke the service only once for
a chunk of 10 or 100 customers, thus ideally reducing
the number of invocations by a factor of 10 or 100,
respectively. This intention leads to two major re-
quirements: (1) The respective services must operate
on chunks of parameters instead of single parameters
(e.g., multiple customer ids instead of a single one),
and (2) the batch jobs must group their individual
invocations into chunks and perform the invocation
once a chunk is full.

While the first requirement only affects the newly
created microservices and can thus be immediately
incorporated into their design, the latter affects the
existing batch implementations. What makes this
change particularly difficult is that the grouping of
invocations is, so to speak, orthogonal to a sequential
main loop. For instance, consider a main loop that
first reads a customer by its id and then performs fur-
ther actions. Executing this loop sequentially does not
allow for chunking, as no read to a second customer is
requested until the first one returns. Therefore, mul-
tiple iterations of the loop need to run concurrently
in order to make effective use of chunking.

In order to achieve this concurrency, we propose
the following approach. First, the body of the main
loop is wrapped in a coroutine, which allows to run
multiple loop iterations concurrently. Then, the in-
vocations of the microservices are changed so that
instead of invoking the service individually and syn-
chronously, they issue a request task via a channel to a
collector coroutine. Besides the necessary parameters,
the request task contains a return channel, on which
the invoker suspends until data becomes available. If
the chunk is not yet full, the collector coroutine just
registers the request; otherwise, it invokes the chunk-
enabled REST service and distributes the appropriate
(partial) results via the provided return channels. As
a consequence, the suspended invokers are reactivated
and proceed with their work. Listing 1 sketches the
coroutine-enabled main loop; as apparent, the neces-
sary changes to the code are limited.

To prevent partially filled chunks from waiting in-
definitely, a ticker coroutine sends signals in regular
intervals to the collector coroutine. If such a ticker
signal is received, the current chunk is processed re-
gardless of its fullness, provided that it is not empty.

It should be noted that this approach could also
be implemented using threads that block instead of
suspending. However, for a desired chunk size of n, at
least n concurrent loop iterations are advisable. As
shown in the evaluation below, a chunk size of 50 to
100 invocations may be necessary for decent perfor-

2



for (contract in contracts) {

launch mainLoopBody(contract)

}

coroutine mainLoopBody(Contract contract) {

returnChannel = Channel <Customer >()

readCustomer(contract.owner , returnChannel)

// Receive suspends until data is available

customer = returnChannel.receive ()

// ... further actions ...

}

Listing 1: Coroutine-enabled main loop

mance. Therefore, the thread count might increase
by a factor of 100, resulting in a considerable con-
sumption of operating system resources.

The major downside of this approach is that due
to the introduction of concurrency, the main loop is
no longer executed in a strict, predictable order. This
can break code that relies on such an order. Therefore,
additional modifications may be necessary before this
approach can be applied.

4 Experimental Evaluation

For the experimental evaluation of the presented ap-
proach, we created a small batch job that creates let-
ters informing customers of a fictional insurance com-
pany about their current premium. For this task, the
batch job iterates over a given number of contracts
from the database and then reads the customer’s ba-
sic data (first name and last name) as well as its pri-
mary postal address. The batch job provides three
types of access to acquire this data: (1) Direct ac-
cess to the customer and address data using one SQL
statement per contract, (2) individual REST calls to
a customer and address service per contract, and (3)
chunked REST calls to a customer and address service
using our coroutine-based approach.

The batch job was implemented in Java and Kotlin
without specific frameworks; the REST services were
built using Spring Boot. The experiments were run on
a Raspberry Pi 4 Model B with 4 GB of RAM running
Raspbian Buster and the Azul Zulu JDK based on
OpenJDK 1.8.0 222. For the underlying database, we
used PostgreSQL 11.5 running in a Docker container
on the same machine, with the data being stored on
an external Toshiba STOR.E ALU 2S hard drive.

In total, we ran the batch job in six different con-
figurations: direct SQL access, individual REST calls,
and chunked REST calls with a chunk size of 10, 20,
50, and 100 requests, respectively. Each configuration
was run 10 times with 100,000 contracts. After each
run, the REST services and the database container
were restarted, and the operating system’s filesystem
buffers were cleared. Table 1 lists the average run-
times for the different configurations.

As apparent from the table, chunking can achieve

Access type Avg. runtime (sec.)
(99% CI)

Direct SQL access [42.035;46.669]
Individual REST [895.351;947.513]
Chunked REST (10) [131.459;138.640]
Chunked REST (20) [79.479;81.901]
Chunked REST (50) [47.366;50.475]
Chunked REST (100) [35.801;37.330]

Table 1: Evaluation batch runtimes

runtimes similar to or even better than individual SQL
accesses with sufficiently large chunk sizes. These re-
sults suggest that the presented approach is indeed ca-
pable of mitigating the potential performance penalty
to batch jobs when migrating to microservices.

5 Related Work

Our chunking approach has similarities with group
prefetching [2]. Coroutines are also used for perfor-
mance improvement in database research, e.g., [4].

6 Conclusions

In this paper, we have presented and evaluated a
coroutine-based approach to mitigate the potential
performance penalty to batch jobs when migrating
to microservices. The evaluation results suggest that
this approach indeed has the potential to achieve this
goal, although additional measures may be necessary
to deal with the lack of a strict execution order. Fu-
ture research might provide means to identify critical
code more easily, and thus improve the applicability
of the approach.

References
[1] M. Conway. “Design of a Separable Transition-

Diagram Compiler”. In: Comm. of the ACM 6.7
(1963).

[2] S. Chen et al. “Improving Hash Join Performance
Through Prefetching”. In: ACM Trans. Database
Syst. 32.3 (2007).

[3] M. Stine. Migrating to Cloud-Native Application
Architectures. O’Reilly, 2015.

[4] C. Jonathan et al. “Exploiting Coroutines to At-
tack the ”Killer Nanoseconds””. In: Proc. VLDB
Endow. 11.11 (2018).

[5] H. Knoche and W. Hasselbring. “Drivers and
Barriers for Microservice Adoption – A Survey
among Professionals in Germany”. In: Enter-
prise Modelling and Information Systems Archi-
tectures (EMISAJ) 14 (2019).

[6] L. Ward et al. Spring Batch – Reference Docu-
mentation. https://docs.spring.io/spring-
batch/4.1.x/reference/html/index.html.
2019.

3

https://docs.spring.io/spring-batch/4.1.x/reference/html/index.html
https://docs.spring.io/spring-batch/4.1.x/reference/html/index.html

	Introduction
	Background
	Batch Processing
	Coroutines

	Approach
	Experimental Evaluation
	Related Work
	Conclusions

