
Towards Reverse Engineering for Component-Based Systems

with Domain Knowledge of the Technologies Used

Yves R. Schneider, Anne Koziolek
Karlsruhe Institute of Technology

{yves.schneider, anne.koziolek}@kit.edu

Abstract

Many developers today face the challenge of manag-
ing and maintaining existing legacy software systems.
Improving the understanding of these systems is an
important issue in addressing these challenges. To im-
prove understanding, reverse engineering can be used
to generate a higher-level representation. However,
generic and extensible reverse engineering solutions
that address multiple types of different technologies
are missing or incomplete. This paper proposes to take
a step in this direction. We describe the underlying
idea of how used technologies such as frameworks and
libraries induce parts of the architecture. Building
on this, we describe our proposed approach of how
the similarities of different technologies can be used
to redevelop component-based architectures. By in-
corporating knowledge about technologies, we aim to
improve the result of reverse engineering processes.

1 Introduction

Today, many companies rely on a variety of heteroge-
neous legacy systems. The management of software
maintenance projects is generally a challenge. To per-
form these maintenance tasks, a developer must first
understand the architecture of the system. One way
to improve understanding is to automatically recover
and create a model of the system attributes that are
relevant to developers. For this purpose, techniques of
model-driven reverse engineering can be used. Model-
driven reverse engineering is the process of under-
standing software and creating a model, suitable for
documentation, maintenance or reengineering [1].

In [4], Garcia et al. come to the conclusion that
clustering of software entities is the almost uniformly
applied method for the automated recovery of archi-
tectures. In most cases, a graph is generated on the
basis of the source code, so that components can be
reconstructed using clustering and/or pattern match-
ing. Our new proposed approach, however, aims to use
domain knowledge of libraries and frameworks for the
reconstruction of architectural models from a system.
Our assumption here is that components with their
interfaces and their distribution are often explicitly
determined by the technology used. By considering
technologies we expect better results in reverse engi-

neering, because heuristics like cohesion or coupling
do not need to be used to determine components from
the source code.

The remaining part of this paper is structured as
follows: In Section 2, we first present the idea and
the initial draft of our proposed reverse engineering
approach. In Section 3, we discuss the related work
and in Section 4 we draw our conclusions.

2 Approach

Software reuse is driven by the need to build systems
that are more complex, reliable, cost-effective and
delivered on time. This reuse of software can take place
in many different ways, such as (re-) using libraries
and frameworks. Both provide developers not only
a setting to develop applications more effectively but
can also induce parts of the software architecture.

The idea of our proposed approach is to model the
knowledge about the domain of the technologies used in
component-based software development in order to use
them to reverse engineer the architecture from artifacts.
This knowledge could describe, for example, how a
component is implemented using a specific framework.

2.1 Technology Example

The following example briefly illustrates how we in-
tend to use knowledge about a particular technology
in order to automatically determine the interface of a
component from the source code and thus automati-
cally generate parts for a software architecture model.

Figure 1 shows a fragment of the source code for a
REST endpoint that was implemented using JAX-RS.
This endpoint is used to query and control an image
provider service from the TeaStore case study [9]. JAX-
RS is a Java programming language API specification
that provides support for creating components that
communicate via REST [6]. For this purpose several
annotations are provided that help to assign a class
as a REST endpoint. Knowledge about these anno-
tations should be used to determine the interfaces of
a component. The aim of our proposed approach is
to map this technology-specific implementation of the
interface into a software architecture model. Figure 2
shows an example of how this implementation of the
interface can be mapped into a (UML-) model.

� �
@Path(” image”)
public class ImageProviderEndpoint {

@GET @Path(” f i n i s h e d ”)
public Response i sF i n i s h ed () { . . . }
@GET @Path(” s t a t e ”)
public Response ge tSta t e () { . . . }
. . .

}� �
Figure 1: Source code fragment of a REST endpoint
to query a microservices [9].

� interface �

ImageProviderEndpoint

+ isFinished(): Response
+ getState(): Response

. . .

Figure 2: UML model for an interface.

2.2 Idea

The idea is to capture domain knowledge about tech-
nologies, i.e. as frameworks and libraries. This domain
knowledge capture the effects of a deployed technology
on the architecture of the system. We want to use this
knowledge for reverse engineering of the architecture
of a system using this technology. This process will
automatically generate an architectural model of the
system based on existing text-based artifacts. Here,
text-based artifacts are considered that are written in
the development of software system, e.g. source code
or other configuration files such as deployment descrip-
tors or project object models. In addition to text-
based artifacts, domain knowledge about technologies
is included as input. This domain knowledge is deter-
mined beforehand and independent of the system to
be reverse-engineered. For this purpose, our approach
includes a framework for model-driven reverse engi-
neering, that should make it possible to capture this
domain knowledge easily and reusably.

In order to achieve the reusability, we suggest mak-
ing such common concepts in component-based soft-
ware development explicit instead of implicitly coding
them in recovery mechanisms. We achieve this by
defining an additional concept metamodel with the
relationships between the common concepts and the
architecture model. These concept metamodels are
general and widely used concepts that are used in
component-based development. They describe the in-
fluences of the concept on a system architecture and
how these are transformed into an architecture model.

2.3 Common Concepts Example

The following example briefly illustrates what such
common concepts could be in the context of compo-
nent-based software development and what could be
the associated technologies. In Fig. 3, these concepts
are shown as dashed boxes, and technologies that im-

Software architecture model

Component

Spring EJB

Container

Docker LXC

Interface

JAX-WS JAX-RS

. . .

Figure 3: Excerpt of resemblances with the associated
technologies.

plement these concepts are shown as solid boxes. As
an example, three different concepts are modeled in
Fig. 3: component, container, and interface.

The Spring Framework and the Enterprise Java-
Beans (EJB) model are two technologies with which
individual components can be easily implemented. The
domain knowledge about these could be used to say
how a component is implemented in the technology.
The corresponding concept model in turn describes
what a component in general is and how it is mapped
into the architecture model.

Docker and Linux Containers (LXC) are technolo-
gies that isolate applications using container virtual-
ization. Domain knowledge about them could be used
to map the distribution of components to hardware
resources. The corresponding concept model generally
describes how a container is mapped into the model.

The Java API for RESTful and XML Web Services
are technologies that describe component interfaces.
Knowledge of these could be used to reverse engineer
both offered and required interfaces from components.
The associated concept model describes how interfaces
of components are mapped into the model.

The concepts shown are just a possible excerpt for
technologists and concepts to be supported by our
reverse engineering approach. They are intended to
illustrate how domain knowledge about specific tech-
nologies can be used to transform artifacts backwards
into a software architecture model.

2.4 Benefits

Overall, the expected benefits of our proposed ap-
proach are improved understanding of the relationships
between technologies and software architecture, simpli-
fied extensibility for new technologies, and improved
results in reverse engineering a software architecture
model.

By making the common concepts in component-
based software explicit, we expect an improved under-
standing of the relationships between a technology and
its underlying concept and the software architecture.

We expect this to reduce errors compared to direct
transformations from software development artifacts

2

into a software architecture model. Our proposed
approach can easily be extended to new technologies
and concepts by introducing the additional concept
model. When a new technology is added, it is only
necessary to describe how it implements its associated
concepts.

We expect improved reverse engineering results,
since heuristics such as cohesion or coupling no longer
need to be used to determine components from the
source code. As we want to use knowledge about the
technologies used, not least to detect components, we
expect our proposed approach to generate models more
in line with real architecture.

2.5 Realization

For our proposed approach we want to start with the
Palladio Component Model (PCM) [7] as software
architecture model. However, the concepts of our
approach should also be transferable to other software
architecture models.

In the first step, we plan to extract an Ecore-based
model of the (Java-) source code with MoDisco [5]. We
also want to use Ecore to describe our concept meta-
models. The transformations from the code model to
the concept metamodel and further to the software
architecture model can be implemented as relation-
ships in declarative transformation languages. These
relationships model for a technology the knowledge of
how to reverse engineer it from the code model.

3 Related Work

Bruneliere et al. developed MoDisco [5], a generic
and extensible model-driven reverse engineering ap-
proach. MoDisco provides support for Java, JEE, and
XML technologies to generate views of the architec-
ture. While MoDisco is extensible with technologies, it
does not support direct reuse of common concepts of
a technology. In addition, the combination of multiple
technologies to generate a view is not supported.

Krogmann introduces SoMoX [2], an approach for
the reverse engineering of software component architec-
tures. Based on an abstract syntax tree model, SoMoX
uses heuristics and a graph-based hierarchical cluster-
ing approach to determine components. SoMoX does
not use any special domain knowledge and therefore
does not consider any technologies or other configura-
tion files. Platenius et al. introduces Archimetrix [3],
an architecture reverse engineering process for com-
ponent-based systems. Archimetrix uses clustering
techniques and also takes design deficits into account
by providing the tools to detect and eliminate these
defects. However, Archimetrix uses SoMoX for cluster-
ing and does not incorporate domain knowledge about
the technologies being used.

Granchelli et al. introduces MicroART [8], a semi-
automated architecture reverse engineering approach
for Docker-based systems. They implement domain
knowledge about specific technologies to redevelop the

REST interfaces of a system. However, only compo-
nents with such REST-based interfaces are captured
and there are no starting points for adding more tech-
nologies.

4 Conclusions

In this paper, we proposed a model-driven reverse
engineering approach that uses domain knowledge to
recover architecture model form component-based soft-
ware systems. The central idea of the proposed ap-
proach is to reverse engineer components with their
interfaces and their distribution from existing software
development artifacts such as source code or configura-
tion files taking into account the technologies used. In
order to be able to specify such domain knowledge for
reverse engineering more easily and more extensively,
we plan to introduced an additional abstraction level
that describes how common software engineering con-
cepts are mapped to component-based architectures.

We expect improved results in reverse engineering,
since elements from the software architecture model
will be explicitly determined by the technology used.
We also expect good maintainability, since domain
knowledge should be reusable and extensible, so that
our approach can easily be extended to new technolo-
gies.

References

[1] S. Rugaber and K. Stirewalt. “Model-driven re-
verse engineering”. In: IEEE Software (2004).

[2] K. Krogmann. “Reconstruction of Software Com-
ponent Architectures and Behaviour Models using
Static and Dynamic Analysis”. PhD thesis. KIT,
2010.

[3] M. C. Platenius et al. “Archimetrix: Improved
Software Architecture Recovery in the Presence
of Design Deficiencies”. In: CSMR ’12. 2012.

[4] J. Garcia et al. “A Comparative Analysis of
Software Architecture Recovery Techniques”. In:
ASE’13. 2013.

[5] H. Brunelière et al. “MoDisco: A model driven
reverse engineering framework”. In: IST (2014).

[6] B. Burke. RESTful Java with JAX-RS 2.0. 2015.

[7] R. H. Reussner et al. Modeling and simulating soft-
ware architectures: The Palladio approach. 2016.

[8] G. Granchelli et al. “MicroART: A Software
Architecture Recovery Tool for Maintaining
Microservice-Based Systems”. In: ICSAW’17.
2017.

[9] J. von Kistowski et al. “TeaStore: A Micro-Service
Reference Application for Benchmarking, Mod-
eling and Resource Management Research”. In:
MASCOTS’18. 2018.

3

	Introduction
	Approach
	Technology Example
	Idea
	Common Concepts Example
	Benefits
	Realization

	Related Work
	Conclusions

