
Towards domain-specific extensibility of quality-aware software

architecture meta-models

Sebastian Dieter Krach
krach@fzi.de

FZI Forschungszentrum Informatik, Karlsruhe

Abstract

The evermore extending presence of software sys-
tems in ubiquitous application domains requires cur-
rent software architecture analyses to incorporate
domain-specific concepts. Current model extension
approaches are too general, do not provide sufficient
support for multiple roles in the development process
or impose high effort on the extension developer. In
this paper, we present MDSD.tools Characteristics, a
framework to enhance existing architecture descrip-
tion languages with easy-to-use quality modeling pro-
files. It facilitates capturing of domain expert knowl-
edge concerning relevant attributes of architecture en-
tities into reusable specifications. Furthermore, it
comprises a notion of contextual information with a
model-based specification for information propagation
to simplify the integration with existing analyses.

1 Introduction

With increasing capabilities of ubiquitous technology,
the size and inherent complexity of the required soft-
ware systems grows. Already 2006, Broy estimated
50% to 70% of software and hardware development
costs to be incurred by software [2]. Hence, also
the relevance of a suitable up-front architecture de-
sign increases. Model-based software quality analy-
ses, e. g. the Palladio approach [4], provide means
to quantitatively assess architecture-level alternatives
and thereby support cost-and-quality-efficient deci-
sions. When designing domain-specific software, do-
main knowledge and domain-specific system proper-
ties become a significant part of the architecture.

Capturing domain-specific properties in architec-
ture models requires to create meta-models for each
domain and subsequently adapting existing analysis
tooling to be reused. While this is acceptable for
domain-specific analyses, it becomes a cumbersome
task for reusing existing generic ones, e. g. per-
formance simulation or reliability analysis. Alter-
natively, the software architect needs to know how
to translate selected domain-specific properties into
generic ones to continue using a generic architec-
ture model. We envision taking a middle ground:
use a generic structural architecture model and sep-
arately extend it with the properties of the domain.

The approach is similar to a modularization of what
Strittmatter et al. [6] refer to as Ω and Σ layer.

In this paper we present MDSD.tools Characteris-
tics, an approach for domain-experts to extend meta-
models with domain-specific properties while being
able to transparently reuse existing analyses.

2 Running Example

Our running example focuses on using Palladio perfor-
mance simulation for a simple perception system. It
consists of two cameras which periodically take a pic-
ture and transmit it via messaging to a shared image
processing component (see Figure 1).

<<EventGroup>>
ImageChannel

message(Image
data)

<<Interface>>
ICamera

void takePicture()

<<BasicComponent>>
CameraComponent

SEFFCompartment

ICamera.takePicture<<Emits>>

<<Provides>>

<<EmitEventAction>>
emitPhoto

InputVariableUsageCompartment

data

BYTESIZE = "Resolution.width *
Resolution.height"

<<System>>
Perception System

<<Assembly
Context>>
FrontCamera

<<Assembly
Context>>
RearCamera

<<AssemblyContext>>
ImageProcessor

frontView

rearView

<<EventChannel>>
frontView

<<EventChannel>>
rearView

RearCameraTrigger

FrontCameraTrigger

<<Characteristic>>
Resolution

height: Pos. Int
width: Pos. Int

C

C Resolution

Resolution

Unbound Characteristics

R
<<ProvidedInterface
ApplicationRule>>

mandatory = True

.height = 100

.width = 200

Resolution
.height = 480
.width = 640

M

M

Figure 1: Excerpt of PCM Perception Example

We want to determine the network load and esti-
mate the transmission latency for different image res-
olution settings. The image resolution determines the
size of each image message and should be configurable
for each camera on its own. Furthermore, the image
resolution affects the probability of successful object
recognition in subsequent stages.

This trivial example illustrates the use of domain-
specific characteristics and does not strive to present
a comprehensive analysis scenario.

3 Domain-specific characterizability

In the following, we discuss the requirements which
need to be fulfilled by a meta-model extension mecha-

nism. We identified the requirements based on our ex-
perience with meta-modeling and model-based analy-
ses of applications from different domains, in partic-
ular using the Palladio Approach [4]. Thereafter, we
present the concepts of our framework to meet the
identified requirements.

I. External extensibility The component devel-
oper of our CameraComponent should be able to spec-
ify the required additional properties for his compo-
nent without the need to adapt the PCM meta model.

II. Multi-view refinement support The meta
model extension framework should provide support
for multi-view-based architecture models, particularly
deferred initializations. In particular, property speci-
fication and initialization should be separate. In our
example, the image resolution property needs to be
specified for the component while concrete image reso-
lution values would be specified during system assem-
bly for each component instance. For the PCM, Com-
ponent Parameters [4, p. 107] provide the required
functionality. They do however lack support for gen-
eralization and automated validation.

III. Ahead of analysis-time validation support
The system architect should be able to validate the
completeness of extended models. For instance, as-
semblies of the camera component which do not spec-
ify an image resolution should be identified.

IV. Flexible constraint type system A domain
expert who specified additional properties also wants
to communicate the expected value range. For in-
stance, the resolution property has two nested positive
integer properties width and height. The specification
is essential for editing and validation tool support.

V. Support for stochastic initializations Cer-
tain characteristics of a system entity cannot be ex-
pressed by a fixed quantity but appear to have a
random component. Consequently, when initializing
properties the modeller should be able to use stochas-
tic means to express probabilistic distributions over
potential values.

3.1 The Characteristics Approach

In order to achieve our desired extensibility, we dis-
tinguish three model-based view points: Characteris-
tics, Manifestations and Value Types (see Figure 2).
A Characteristics model captures the specification of
properties and includes rules on where they can be
applied on an existing meta-model. Manifestations
are concrete values for a particular Characteristic and
a model entity. They are stored inside the original
model. Third, Value Types define the space of valid
Manifestations. Value Types are defined using a sim-
plified modeling language similar to Ecore. Primitive
types directly map to their Ecore equivalents.

The applicability of a characteristic to a model en-

Manifestation

Characteristic

ValueType

<<captures
concrete values

(distribution) for>>

adheres to

<<specifies type and
constraints for

concrete values>>

Figure 2: Overview of the Characteristics view points

tity, that is, the possibility to specify a manifestation
on a concrete model element, is determined by Appli-
cation Rules. Each rule can be regarded as function
rule : M × C → {void, optional,mandatory}, with
M , set of all model elements, and C, set of all charac-
teristics. A void result refers to a rule not making a
statement concerning the applicability. We intention-
ally refrained from supporting prohibiting rules to pre-
vent rule conflicts. In our example, a rule specifies the
mandatory requirement for the Resolution character-
istic to each component which provides the ICamera
interface. Multiple Characteristics and Application
Rules are bundled to a Characteristic Profile. Similar
to EMF Profiles [3], they are applied to a model.

When applying the MDSD.tools Characteristics
framework we differentiate four phases: 1) enhanc-
ing the original meta-model with framework support,
2) defining profiles of characteristics and their appli-
cability, 3) creating enriched models with manifesta-
tions according to the applied profiles and 4) using
the enriched models in model-based quality analyses.
The meta-model extension (phase 1) needs to be done
by a developer familiar with the meta-model. Phase 2
targets domain experts which require additional prop-
erties. Starting with phase three the properties are
integrated transparently into the model view points.

3.2 Hierarchical Manifestation Contexts

A Context Model is the central artifact in enhancing
an existing meta model with Characteristics support.
It captures which classes of a meta-model are eligible
for characterization. In particular, it defines which
model elements function as Characterization Contexts
and their inter-context relationships. A context con-
stitutes a name space containing a set of valid identi-
fiers. Each identifier either refers to a Manifestation or
links to a different but related context, e. g. a param-
eter name inside a RDSEFF. In our example, each Ba-
sicComponent and each AssemblyContext constitute
a separate context. On the technical side, the context
serves as storage container for Manifestations.

For each class which acts as Characteristic Context,
the Context Model contains model queries, to find the
Contexts which are included and to which there is a
refines relationship. Identifiers in included contexts
are resolved, as if they were contained in the including
context. Unless specified otherwise, includes relation-
ships are assumed along containment references.

Contextual refinements are not included by-

2

default, as their nature is conditional. It lies within
the responsibility of the evaluating analysis to select
the set of refining contexts which need to be taken
into account. Manifestations in the selected refining
contexts then overlay the target context. If the target
context already contains a Manifestation, the refining
Manifestation has precedence. For example, the In-
terpreter of a Palladio Performance simulation, when
simulating a RDSEFF, identifies the currently active
Assembly and includes selects the appropriate Assem-
bly Context. Figure 3 visualized relevant contextual
relations in our example.

<<Context>> ExternalCallAction

<<Context>> RDSEFF

<<Context>> BasicComponent

<<Context>> Repository

<<includes>>

<<includes>>

<<includes>> <<Context>> AssemblyContext
<<refines>>

<<Context>>
Parameter

<<imports>>

<<refines>>

"Resolution":
 {width: 200,
 height: 100}

<<Manifestation>>

<<target>>

"Bytesize": Resolution.width *
Resolution.height

<<Manifestation>>

<<Context>>
Parameter

<<target>>

Figure 3: Excerpt of exemplary lookup hierarchy

To specify Manifestations, we extend the existing
Stochastic Expressions (StoEx) approach [4] with sup-
port for contextual lookups. Every Enhanced StoEx
(eStoEx) expression is evaluated in the context which
contains it. We reuse the mathematical and stochas-
tic capabilities of StoEx but refactor variable reference
access. Henceforth, identifiers are resolved using the
containing context. We continue to use dot separation
for navigation between contexts. When resolving an
identifier, e. g. by analyses, the evaluation starts with
the context containing the expression and follows in-
cludes relationships until the identifier is found taking
into account conditional context overlays.

4 Related Work

In the following, we discuss similar extension mecha-
nisms. To the best of our knowledge, there is currently
no approach which fulfills all of our requirements.

With Component parameters [4, p. 107], the Pal-
ladio Component Model already provides support for
multi view modeling on selected elements. However,
they are specific to the PCM and do not support ex-
ternal extensibility. Our approach provides a generic
mechanism to extend existing meta-models. Compo-
nent parameters provide no support for automated
validation, which is a main requirement of ours.

CQML+ [1] is a generic quality modeling frame-
work for component-based systems. It uses a similar
separation between specifications and initializations of
quality parameters as our framework. While CQML
focuses on inter-component contracts, it does not pro-
vide support for multi-view refinements.

EMF Profiles [3] provide means to attach addi-
tional informations to existing meta-models. The el-

ements which should be extensible are selected solely
based on their meta-class. EMF Profiles does not pro-
vide support for constraint data types or contextual
refinements. It could, however, serve to store Mani-
festations inside of existing model elements.

Architectural Templates [5] fulfill most of our re-
quirements. ATs support complex model extensions,
including structural adaptations. Their specification
however requires the domain expert to create several
complex artifacts, including model transformations.
ATs are less intrusive to the meta-model to extend
but still need similar extensions to the tooling.

5 Conclusion and Future Work

In this paper we presented foundational concepts
of the MDSD.tools Characteristics framework. The
framework aims to provide domain-specific extensi-
bility to existing software architecture meta-models.
It enables domain-experts to enhance enabled meta-
models with additional properties without changing
the meta-model or the underlying tooling itself. Fur-
thermore, it provides a formalized mechanisms to al-
low for property refinements throughout the architec-
ture design process. To provide this flexibility, meta-
model and tooling need to be extended once.

The development of the framework is currently in
progress1. Consequently, as part of future work we
plan on conducting elaborate evaluations to deter-
mine the degree to which we were able to achieve our
goals. We will provide more complete documentation
on modeling concepts, technical aspects and applica-
tion principles in an upcoming technical report.

Acknowledgements. The author acknowledges recurrent re-
views and conceptual input of Stephan Seifermann and Dominik
Werle (both Karlsruhe Institute of Technology). This work was
partially funded by the German Federal Ministry of Education
and Research under grant 16EMO0360 (SmartLoad).

References
[1] S. Röttger and S. Zschaler. “CQML+: Enhancements

to CQML”. In: In Proceedings of the 1st International
Workshop on Quality of Service in CBSE. Cépaduès-
Éditions, 2003, pp. 43–56.

[2] M. Broy. “Challenges in Automotive Software Engineer-
ing”. In: Proceedings of the 28th International Conference
on Software Engineering. ICSE ’06. Shanghai, China:
ACM, 2006, pp. 33–42.

[3] P. Langer et al. “EMF Profiles: A Lightweight Extension
Approach for EMF Models”. In: Journal of Object Tech-
nology 11.1 (Apr. 2012), 8:1–29.

[4] R. H. Reussner et al. Modeling and Simulating Software
Architectures – The Palladio Approach. Cambridge, MA:
MIT Press, Oct. 2016. 408 pp.

[5] S. M. Lehrig. “Efficiently Conducting Quality-of-Service
Analyses by Templating Architectural Knowledge”. PhD
thesis. Karlsruher Institut für Technologie (KIT), 2018.

[6] R. Heinrich, M. Strittmatter, and R. H. Reussner. “A
Layered Reference Architecture for Metamodels to Tailor
Quality Modeling and Analysis”. In: IEEE Transactions
on Software Engineering (2019).

1https://github.com/MDSD-Tools/

Characteristics-Modeling

3

https://github.com/MDSD-Tools/Characteristics-Modeling
https://github.com/MDSD-Tools/Characteristics-Modeling

	Introduction
	Running Example
	Domain-specific characterizability
	The Characteristics Approach
	Hierarchical Manifestation Contexts

	Related Work
	Conclusion and Future Work

