
Modelling and Predicting Memory Behaviour in Parallel Systems

with Network Links—Palladio-based Experiment Report

Philipp Gruber
gruberpp@studi.informatik.uni-stuttgart.de

Uni Stuttgart, Stuttgart, DE

Markus Frank
markus.frank@informatik.uni-stuttgart.de

Uni Stuttgart, Stuttgart, DE

Abstract

This work improves the capabilities of Palladio to pre-
dict the performance of parallel software in multicore
environments.

In previous work, we could show that the accuracy
of the Palladio simulations is not sufficient for mul-
ticore systems. We assume that one reason for this
is the memory bandwidth behaviour, which is not in-
cluded in in the Palladio Component Model and can
become a bottleneck in parallel software.

We present an approach to model the memory
bandwidth behaviour by the means of an already ex-
isting network link concept. We can show that by
using network link as a memory model we can im-
prove our predictions up to 26% points using 16 cores
on a machine and can receive an accuracy of 90% for
our use case.

1 Introduction

The Palladio Component Model (PCM) 1 is designed
to help software architects to make design decisions
in early stages of the development process. Software
Architects can make what-if analyses for quality at-
tributes (i.e., response time) based on the software
architecture by specifying a user, hardware, and soft-
ware model.

While the PCM works well for single-core proces-
sors, we showed in previous work [1], that Palladio is
inaccurate in predicting the performance of multicore
systems. In fact, Palladio predicts a linear speedup
with an increasing number of cores, which is false.

One factor, we assume has a major impact, is the
memory hierarchy and the memory bandwidth be-
haviour [2]. The memory bandwidth is referring to
the capacity limit of the memory bus. If the capacity
limit of the bus is reached the cores are subsequently
idle, because they have to wait for I/O to continue.

In this paper, we research an approach that uses
network links to include the impact and characteris-
tics of the memory bandwidth in the prediction mod-
els. Further, we use resource containers in combina-
tion with network links to model different cache levels.

To evaluate the approach we use the same use
case we used in previous works—a matrix multipli-

1https://www.palladio-simulator.com/home/

cation [1]. In this algorithmic use case, we perform a
standardized matrix multiplication, where we multi-
ply matrices of the size 3000x3000 filed with random
integers and measure the run-time for different num-
bers of worker threads and core settings.

We use the previous experiments as a baseline [1]
and answer the following two research questions:

• RSQ1: Is it possible to model memory behaviour
for multicore systems with the network link ap-
proach?

• RSQ2: Are the predictions more accurate?

This paper is structured as follows, in the mod-
elling chapter we will explain how we modelled the
memory behaviour in Palladio and how we calibrated
this model. In the execution and measurement chap-
ter, we describe our experiment. In the evaluation,
we present our results and answer the research ques-
tions. In chapter five we briefly state what lessons we
learned. We finish this paper with an outlook where
we suggest which topics future work should cover.

2 PCM Modeling

The modelling section covers two topics. First, the
modelling of the matrix multiplication combined with
the memory bandwidth model and second, the cali-
bration of those models, to get reasonable results.

2.1 Modeling Creation

Memtest86 Model: In a first step, we wanted to
evaluate our initial idea to model the memory band-
width with network links. Therefore, we used a very
simple scenario and modelled the behaviour of a mem-
ory bandwidth benchmarking tool. For this, we used
Memtest862, which does loading or writing an increas-
ing size of data from or into the memory. We were able
to predict the performance of Memtest86 and used the
rough structure of this model in later use cases, (i.e.,
Figure 1), which we describe in the following in detail.

Matrix Multiplication Model: As a starting
point for the matrix multiplication model, we used
the model provided [1] and extended it by the memory

2https://www.memtest86.com

https://www.palladio-simulator.com/home/
https://www.memtest86.com


Figure 1: Resource environment view: 2 core system.

model. So here, we only describe the changes made to
the model. All used models are made publicly avail-
able and can be accessed in our git repository3.

First of all, we added four memory operation per
multiplication operation. This aligns to the behaviour
of a matrix multiplication: three reading operations
and one writing operation to save the (intermediate)
result. That is how we include the traffic of the mul-
tiplication to the model.

In the next step, we added network links to our
model to reflect the memory bus and additional re-
source containers to represent RAM, L1, L2 and
L3 cache. In Palladio network links can only con-
nect resource containers. Therefore, it was neces-
sary to change the resource environment, allocation
and repository diagram. We added for each mem-
ory hierarchy level in our hardware (RAM, L1, L2,
L3 cache) a resource container. Additionally, we cre-
ated for each memory hierarchy a dummy component
and allocated it to the corresponding resource con-
tainer. These resource containers were connected to
the existing CPU resource container by an individ-
ual network element, see Figure 1. In the Service
Effect Specifications we called the dummy component
by an ExternalCallAction. This was done before the
calculation of the respective memory load operations
could be issued. To specify the data over the network
we used the property bytesize.

In the next section, we will describe how we cali-
brated the model.

2.2 Model Calibration

For a description of how to calibrate the CPU resource
demand, we refer to our previous work [1]. In the fol-
lowing, we will describe how we calibrated the memory
bandwidth, throughput and caching behaviour.

3https://github.com/PhilippGruber/MemBandwidthModels

Figure 2: Illustration from Palladio showing the SEFF
of the issued network demand.

The throughput of the memory bandwidth was
measured with Memtest86 and annotated in the re-
source environment (see figure 1). Memtest86 is also
able to distinguish between load/write operations.
The measured throughput values are reflecting the
capabilities of the memory bus in our calibration.
Since the difference between reading and writing was
marginal we took the same mean value for both.

Now we needed to determine the traffic on the
memory bus. For this, we can estimate the amount
of memory traffic. From above we know that the ma-
trix multiplication loads three values and writes one
back. That means we have four memory operation
for each loop iteration. These numbers hide how the
traffic is distributed over the memory hierarchy. To
uncover this fact, we calibrate our model, the cache
behaviour, and the memory access numbers with the
help of perf 4. Perf returns the overall numbers of the
memory load operations and their distribution over
the memory hierarchy. These numbers enable precise
modelling in Palladio.

3 Execution and Measurements

Unfortunately, we were not able to access the same
hardware as used before. Therefore, we had to repeat
all experiments, measurements and calibrations again
for the following hardware:

3.1 Hardware

All experiments are executed on two different ma-
chines. The characteristics of the machines are de-
scribed in Tab. 1.

Aspect Machine 1 (M1) Machine 2 (M2)

Cores (phys./virt.) 4x3 / 8x3 8x5 / 16x5
Clock Rate 2.5 GHz 2.4 GHz
L1 cache 32 KB 32 KB
L2 cache 256 KB 256 KB
L3 cache 15 MB 30 MB
RAM 24 GB 896 GB

Table 1: Used hardware

Both machines run on Ubuntu 18.04 with hyper-
threading enabled.

4http://man7.org/linux/man-pages/man1/perf.1.html

2

https://github.com/PhilippGruber/MemBandwidthModels
http://man7.org/linux/man-pages/man1/perf.1.html


Figure 3: Comparison of simulation accuracy

4 Evaluation

In this section we evaluate our results from Sec. 2 and
3 by answering both RSQ1 and RSQ2.

Evaluation of RSQ1

We can affirm that it is possible to model memory
behaviour for multicore systems with network links.
Once we were able to model Memtest86 in Palladio,
we showed this, too. The memtest use case is just
loading/writing an increasing size of data from or to
the memory (hierarchy), over a limited bus. This is
the memory bandwidth and it is possible to adapt
this model to our matrix multiplication or any other
use-case that aims to include the memory bandwidth/
behaviour.

Evaluation of RSQ2

Figure 3 shows the accuracy of the simulations in per-
centage. A negative value (i.e., -7%) means that the
simulation predicted the run-time to be 7% faster than
we measured. We distinguish between the two ma-
chines M1 and M2 and compare our approach to the
simulations without the memory model in place. For
M2 we can report an overall increase of accuracy. For
M1 we can only report a great increase for 16 cores.

Reasons for the bad performance on M1 for 2-8
cores, we assume in a badly calibrate caching model
for this machine. As soon as we use 16 cores, the sys-
tem makes use of hyper-threading, which often comes
at the cost of cold caches and the simulation accuracy
increases at once (still using the memory bandwidth
model).

For M2 we can improve the predictions of the sim-
ulations by an average of +9% points.

5 Lessons Learned

Besides the answer to the research questions, we
gained further knowledge, which we will share in the
following in the form of lessons learned.

LL1 Accuracy gain: First of all, we learned that
our approach is actually improving the accuracy in
Palladio, as we are able to use the network links to

bring the memory bandwidth effect of the memory
hierarchy into Palladio.

LL2 Remaining inaccuracy: The multicore pre-
dictions are still not accurate enough. This suggests
the conclusion that we only solved a part of the prob-
lem and need to consider additional performance met-
rics.

LL3 Better models/estimations: In the case of
M1 using 2-8 cores, our models add too much of
a memory bandwidth effect, while for 16 it is not
enough. We assume that we are missing other effects
as the synchronization of private memory or the con-
tention for shared resources. On the other hand, some
parts of our models are overestimating. So for the fu-
ture, we need to find a better way of calibrating the
memory model.

LL4 Memory behaviour: We saw that our model
is the best when cache behaviour became a bottle-
neck. In our experiment, this was not the case for M1
2-8 cores. We observed that the cache misses were
shrinking with an increasing amount of cores, until
the point that the cache size limit was reached. Cer-
tainly, it was the case with 16 cores and explained the
big accuracy gain. That means all performance mod-
els which aim to predict the speed up, should consider
such hardware limitations.

LL5 Core limitations: Since we noticed that
caching works rather well until 8 cores, a repetition
of the experiment with more cores (32, 64) will be
interesting.

6 Conclusion and Outlook

In this short paper, we described an approach on how
to model memory bandwidth and hierarchy’s in Pal-
ladio. We repeated existing experiments to evaluate
our approach and could show that we gain additional
accuracy of the simulations up to +26% points.

However, we also could show, that memory be-
haviour is not the only limiting factor to describe
the speedup behaviour of parallel software. In future
work, we need to investigate different performance-
influencing factors to also include them into our pre-
diction models and find better caching models.

References

[1] M. Frank and M. Hilbrich. “Performance Pre-
diction for Multicore Environments—An Experi-
ment Report”. In: Proceedings of the Symposium
on Software Performance 2016, 7-9 November
2016, Kiel, Germany. 2016.

[2] M. Frank, F. Klinaku, and S. Becker. “Challenges
in Multicore Performance Predictions”. In: Com-
panion of the 2018 ACM/SPEC International
Conference on Performance Engineering. ICPE
’18. Berlin, Germany: ACM, 2018, pp. 47–48.

3


	Introduction
	PCM Modeling
	Modeling Creation
	Model Calibration

	Execution and Measurements
	Hardware

	Evaluation
	Lessons Learned
	Conclusion and Outlook

