
On Learning Parametric Dependencies from Monitoring Data

Johannes Grohmann, Simon Eismann, Samuel Kounev
{first name}.{last name}@uni-wuerzburg.de

University of Würzburg, Germany

Abstract

A common approach to predict system performance
are so-called architectural performance models. In
these models, parametric dependencies describe the
relation between the input parameters of a component
and its performance properties and therefore signifi-
cantly increase the model expressiveness. However,
manually modeling parametric dependencies is often
infeasible in practice. Existing automated extraction
approaches require either application source code or
dedicated performance tests, which are not always
available. We therefore introduced one approach for
identification and one for characterization of paramet-
ric dependencies, solely based on run-time monitoring
data.

In this paper, we propose our idea on combining
both techniques in order to create a holistic approach
for the identification and characterization of paramet-
ric dependencies. Furthermore, we discuss challenges
we are currently facing and potential ideas on how to
overcome them.

1 Introduction

The parameterization of a software performance
model, i.e., the values for model parameters such as
loop frequencies, branching probabilities or resource
demands, is a significant factor influencing its pre-
diction accuracy. However, these parameters often
depend on the input given to the respective compo-
nent (e.g., the time required to sort a list depends
on its size). Therefore, many architectural perfor-
mance models include so-called parametric dependen-
cies [11], allowing to explicitly model input parame-
ters and their influence on model parameters. These
dependencies describe, e.g., the resource demand of a
function call in dependence of its input parameters.

However, modeling parametric dependencies is
cumbersome in practice, as it requires expert knowl-
edge, is quite error-prone and requires a significant
amount of human work. For example, in a case study
by Krogmann et al. [4] more than 24 hours were re-
quired to manually model the parametric dependen-
cies in a small system. Therefore, manually modeling
parametric dependencies for large systems is infeasi-
ble. Manual effort generally hinders the adoption of
performance modeling techniques in practice [14].

Krogmann et al. [4] use genetic search to find de-

pendencies between a component’s input parameters
and the number of executed bytecode instructions.
Other approaches like Mazkatli et al. [13] incremen-
tally enrich performance models based on individual
code changes. However, these approaches require ei-
ther application source code or dedicated performance
tests to extract the parametric dependencies.

We previously proposed to identify parametric de-
pendencies solely from run-time monitoring data [15].
The used monitoring data contains call-chain traces
as well as logs of individual parameter values together
with the resource demand or the response time of each
function execution, as observable e.g., by Kieker [7].
Similarly, it is possible to characterize a set of given
parametric dependencies using monitoring data and
standard machine learning regression techniques [10].
Therefore, we combine both approaches in order to
create one holistic and autonomic approach able to
learn parametric dependencies from black-box moni-
toring data. In this paper, we present our approach on
creating such a combined approach and outline some
of the challenges we are expecting on our way.

2 Learning Parametric Dependencies
from Monitoring Data

We structure the task of extracting performance mod-
els containing characterized parametric dependencies
and place it in the context of existing related work in
Figure 1. Starting with a set of monitoring traces from
a software system, one can utilize existing approaches
to extract a performance model without parametric
dependencies [1, 3, 5, 6, 9, 16]. At the same time, the
monitoring data is fed into our dependency learning
pipeline. This task can be split into two sub-tasks: (1)
detecting the dependencies, that is, identifying which
parameters influence a model variable, and (2) char-
acterizing the dependencies, that is, describing how
the value of a parameter can be derived from the in-
fluencing parameters. In the following, we will outline
our techniques for the two sub-tasks in more detail.

2.1 Identifying Parametric Dependencies

The first step is to identify which model variables are
dependent on which input parameters. Our approach
achieves this by leveraging feature selection techniques
from machine learning. The identification of any para-
metric dependencies between different variables of the



Monitoring Data Model Extraction
[1, 3, 5, 6, 8, 15] Performance Model

Identified
Dependencies

Dependency
Characterization

[2, 4, 5, 9]

Performance Model
with Dependencies

Dependency
Identification

[14]

Artifact

Process
Characterized
Dependencies

Dependency
Integration

Figure 1: Model extraction workflow.

monitoring stream can be framed as a classic applica-
tion of feature selection: We define one model parame-
ter as a target parameter and consider all other model
parameters as potential features. The challenges when
applying feature selection to this domain are to ob-
tain suitable measurement streams, to filter and se-
lect the most promising dependencies, and to discard
a detected dependency if there is no modeling gain.
We propose a generic algorithm for the automated
identification of parametric dependencies on monitor-
ing streams and apply three different heuristics to fil-
ter the identified dependencies [15]. These heuristics
utilize domain knowledge to drastically decrease the
number of identified dependencies reducing them to
only performance relevant ones. After evaluating a
filter-based, a wrapper-based and an embedded fea-
ture selection technique, we show that the filter-based
approach outperforms the competing techniques by
identifying 11 performance-relevant dependencies in
our TeaStore [12] case study.

2.2 Characterizing Dependencies

After a set of possible parametric dependencies is
identified, these dependencies can then be character-
ized as also done by [2, 4, 5]. Our approach is to focus
on standard regression techniques. Since the charac-
terization of any labeled dependency is a relatively
straightforward regression task, our study creates a
representative data set containing parametric depen-
dencies and evaluates how well a range of machine
learning approaches can characterize the contained
parametric dependencies [10]. The study finds that
no machine learning approach performs well for all
parametric dependencies, i.e., that there is no single
algorithm best suited for the task. Therefore, we pro-
pose a meta-selector selecting the most appropriate
regression technique for every dependency, based on
the characteristics of the available data. This meta-
selector reduces the prediction error compared to the
best individual approach by 30%.

3 Remaining Challenges

Our next step is now to conduct a comprehensive case
study combining both approaches and the model ex-
traction pipeline as depicted in Figure 1 in order to
evaluate the impact of extracting parametric depen-

dencies. However, while doing so, we still face many
open challenges, some of which we outline below.

3.1 Feature Generation

One of the most important aspects when applying ma-
chine learning techniques are the available features.
When utilizing our approach, it is necessary to gen-
erate machine learning features from the monitor-
ing data. This implies that all call parameters are
logged. However, while some primitive types are easy
to convert to machine learning features (e.g., integers,
floats, or enumerations), other more complex data
types (e.g., lists, JSON data blocks, Strings, or com-
plex queries) pose some significant challenges. Some
of these can be solved by domain knowledge (e.g.,
quantifying a list by its length or classifying different
SQL queries into a set of categories), but this limits
the autonomy and the generalizability of the approach
and is therefore undesirable. One idea could be to uti-
lize clustering in order to group different requests into
different categories based on the response of the soft-
ware system.

3.2 Estimating Resource Demands

Next to accurately monitoring the call parameters,
monitoring the model parameters for each correspond-
ing call is equally important. Some model parameters
(e.g., branching probabilities or external call counts)
are easy to measure. However, some model param-
eters like resource demands are very challenging to
obtain. As measuring resource demands usually intro-
duces a lot of overhead, resource demands are often
estimated [8]. However, most estimators can not esti-
mate demands for individual calls. Unfortunately, the
resource demands of every single call together with the
corresponding parameter values are required in order
to draw conclusions about their correlation. One solu-
tion is to approximate the resource demand with the
response time of a function call and to keep the load on
the system sufficiently low in order to reduce queue-
ing delay. However, this solution has disadvantages so
other solutions to this problem might be beneficial.

3.3 Baseline Selection

As the manual modelling of dependencies in perfor-
mance models is actually infeasible, it is hard to com-
pare the automatically extracted models to manual

2



models on a large scale. One possibility is to com-
pare the detected dependencies with the ones found
by other approaches (that use source code or dedi-
cated measurements). However, this puts the alterna-
tive approaches in the role of the gold-standard which
can be problematic as it assumes that the alternative
approaches work perfectly. Additionally, as they are
based on a different paradigm, they need to have ac-
cess to different and/or more information. Therefore,
the only meaningful comparison can be done by eval-
uating the accuracy gain of the model enriched with
parametric dependencies compared to a basic model,
not containing any (or few) parametric dependencies.
However, there is no way of determining the “upper
limit” or the gold standard when using this approach.

3.4 Performance Model Integration

The final task after obtaining and successfully char-
acterizing a set of dependencies is to integrate them
into a given performance model. Our approach does
not focus on any specific modeling formalism in or-
der to be independent of the underlying formalism.
However, most of them expect a dependency formal-
ization in the form of a mathematical expression, e.g.,
f(x) = y, as it is usually undesirable for architec-
tural performance models to contain black-box func-
tions as they are intended to be human interpretable.
As our approach [10] applies different black-box ma-
chine learning algorithms, it is not trivial to convert
them to a simple mathematical expression. We are
therefore currently looking into solutions approximat-
ing the resulting black-box machine learning model
with a mathematical expression.

4 Conclusion

In this paper, we proposed our approach on combin-
ing (i) feature selection techniques, and (ii) standard
regression together with meta-selection to first iden-
tify and then characterize parametric dependencies for
performance models solely based on monitoring data.
We quickly summarized the results from our previous
studies and outlined three remaining challenges when
combining both approaches, namely (i) the generation
of machine learning features from monitored parame-
ters, (ii) the extraction of resource demand estimates
for each of these calls, and (iii) the evaluation of our
approach by selecting proper baselines.

References
[1] C. E. Hrischuk et al. “Trace-Based Load Characteriza-

tion for Generating Performance Software Models”. In:
IEEE Trans. Softw. Eng. 25.1 (Jan. 1999), pp. 122–135.

[2] M. Courtois and M. Woodside. “Using Regression
Splines for Software Performance Analysis”. In: Proceed-
ings of the 2nd International Workshop on Software and
Performance. 2000, pp. 105–114.

[3] T. A. Israr et al. “Automatic Generation of Layered
Queuing Software Performance Models from Commonly
Available Traces”. In: Proceedings of the 5th Interna-
tional Workshop on Software and Performance. WOSP
’05. New York, USA: ACM, 2005, pp. 147–158.

[4] K. Krogmann, M. Kuperberg, and R. Reussner. “Us-
ing genetic search for reverse engineering of para-
metric behavior models for performance prediction”.
In: IEEE Transactions on Software Engineering 36.6
(2010), pp. 865–877.

[5] F. Brosig, N. Huber, and S. Kounev. “Automated
Extraction of Architecture-Level Performance Models
of Distributed Component-Based Systems”. In: 26th
IEEE/ACM International Conference On Automated
Software Engineering (ASE 2011). Oread, Lawrence,
Kansas, Nov. 2011.

[6] A. Mizan and G. Franks. “An automatic trace based
performance evaluation model building for parallel dis-
tributed systems”. In: SIGSOFT Softw. Eng. Notes 36.5
(Sept. 2011), pp. 61–72.

[7] A. van Hoorn, J. Waller, and W. Hasselbring. “Kieker:
A Framework for Application Performance Monitoring
and Dynamic Software Analysis”. In: Proceedings of the
3rd joint ACM/SPEC International Conference on Per-
formance Engineering. 2012, pp. 247–248.

[8] S. Spinner et al. “Evaluating Approaches to Resource
Demand Estimation”. In: Perform. Evaluation 92 (Oct.
2015), pp. 51–71.

[9] J. Walter et al. “An Expandable Extraction Framework
for Architectural Performance Models”. In: Proceedings
of the 3rd International Workshop on Quality-Aware
DevOps (QUDOS’17). ACM, Apr. 2017.

[10] V. Ackermann et al. “Black-box Learning of Paramet-
ric Dependencies for Performance Models”. In: 13th In-
ternational Workshop on Models@run.time (MRT), co-
located with ACM/IEEE 21st International Conference
on Model Driven Engineering Languages and Systems
(MODELS 2018). (Oct. 14, 2018). CEUR Workshop
Proceedings. Copenhagen, Denmark, Oct. 2018.

[11] S. Eismann et al. “Modeling of Parametric Dependen-
cies for Performance Prediction of Component-based
Software Systems at Run-time”. In: IEEE International
Conference on Software Architecture. 2018.

[12] J. von Kistowski et al. “TeaStore: A Micro-Service Refer-
ence Application for Benchmarking, Modeling and Re-
source Management Research”. In: Proceedings of the
26th IEEE International Symposium on the Modelling,
Analysis, and Simulation of Computer and Telecommu-
nication Systems. MASCOTS ’18. Sept. 2018.

[13] M. Mazkatli and A. Koziolek. “Continuous Integration
of Performance Model”. In: Companion of the 2018
ACM/SPEC International Conference on Performance
Engineering. ICPE ’18. Berlin, Germany: ACM, 2018,
pp. 153–158.

[14] C. Bezemer et al. “How is Performance Addressed in
DevOps?” In: Proceedings of the 2019 ACM/SPEC In-
ternational Conference on Performance Engineering,
ICPE 2019, Mumbai, India, April 7-11, 2019. 2019,
pp. 45–50.

[15] J. Grohmann et al. “Detecting Parametric Dependencies
for Performance Models Using Feature Selection Tech-
niques”. In: Proceedings of the 27th IEEE International
Symposium on the Modelling, Analysis, and Simulation
of Computer and Telecommunication Systems. MAS-
COTS ’19. Rennes, France, Oct. 2019.

[16] S. Spinnner et al. “Online model learning for self-aware
computing infrastructures”. In: Journal of Systems and
Software 147 (2019), pp. 1–16.

3


	Introduction
	Learning Parametric Dependencies from Monitoring Data
	Identifying Parametric Dependencies
	Characterizing Dependencies

	Remaining Challenges
	Feature Generation
	Estimating Resource Demands
	Baseline Selection
	Performance Model Integration

	Conclusion

