
On the Difficulties of Supervised Event Prediction based on

Unbalanced Real-World Data in Multi-System Monitoring

Andreas Schörgenhumer1, Mario Kahlhofer1, Peter Chalupar1,
Hanspeter Mössenböck2, Paul Grünbacher3

{firstname.lastname}@jku.at
1 Christian Doppler Laboratory MEVSS, Johannes Kepler University Linz, Austria

2 Institute for System Software, Johannes Kepler University Linz, Austria
3 Institute for Software Systems Engineering, Johannes Kepler University Linz, Austria

Abstract

Online failure prediction of performance-critical
events is an important task in fault management of
software systems. In this paper, we extend our pre-
vious multi-system event prediction by analyzing its
performance on unbalanced, real-world data, which
represents a realistic online scenario. We train a ran-
dom forest classifier with different data preprocessing
configurations, including data augmentation to cope
with the extreme class imbalance. The results reveal
that the prediction quality of the tested multi-system
model drops significantly compared to the balanced
scenario. Although our supervised event prediction
approach as well as different data preprocessing con-
figurations turned out to be ineffective, we consider
the insights of our work valuable for the community.

1 Introduction

Preventing slowdowns, failures and other deviations
from expected behavior is an important aspect in
managing the operation of software systems [4]. Rare
events indicating an abnormal state of the system are
called anomalies. Numerous approaches have been
proposed to automate their detection. If labels are
available, supervised anomaly detection [2] can be
pursued, which uses data indicating the possible cause
of such events and then creates machine learning (ML)
models to predict events based on new data.

In earlier work [7], we investigated such a prob-
lem by using time series monitoring data (CPU, mem-
ory, disk, network) to predict so-called service slow-
down events with quite promising results (median F1-
score of 85%). We performed our evaluation on bal-
anced1 data to explore whether such an approach
could yield acceptable results. However, our exper-
iment did not represent a real-world testing scenario
with rare anomaly events and therefore unbalanced2

1Balanced means that each class has equally many observa-
tions (here: normal data class, anomaly class).

2Unbalanced means that there is a majority class with more
observations (here: normal data class) and a minority class with
fewer observations (here: anomaly class).

data. Unfortunately, this is where major problems
arise [2], most notably due to high class imbalance
with only a small portion of the data labeled as
anomalous. Many ML models, e.g., the random forest
classifier [1], strive to achieve high accuracies, so ap-
propriate steps must be taken before training to avoid
that the models simply predict the majority class3.
Common techniques for preprocessing the training
data include under-sampling, over-sampling and com-
binations of both [3]. The prediction must then be
performed on the unbalanced test data in order to
yield meaningful insights for real-world scenarios.

We focus our research on multi-system environ-
ments that collect monitoring data from multiple sys-
tems. Such environments can bring benefits like build-
ing more general models to predict yet unseen systems
or allowing to deal with limited data (e.g., use rare
events of multiple systems). We extend our previ-
ous approach on multi-system environments [7] and
perform an evaluation based on a real-world test sce-
nario. We again use industrial monitoring data pro-
vided by an industry partner, which consists of time
series of CPU, memory, disk and network metrics from
selected, multiple software systems, with the goal to
predict service slowdown events. Due to the sheer
amount of configuration options during data selec-
tion, preprocessing, hyper-parameter tuning, etc., we
first discuss the selected set of configurations and then
present the performance of our ML approach on real-
world unbalanced test data. We conclude this paper
by discussing our approach and the issues that arose.

2 Data

This work is an extension of [7] and uses the same
monitoring data of multiple software systems. Each
system is a set of connected entities such as hosts,
disks, network interfaces and services. Table 1 lists
the 34 time series data for the first three entity types,
which are provided in 1-minute resolution. Services
represent the business logic of a system. Our events

3For example, a class imbalance of 99% to 1% and a model
predicting the majority class would lead to an accuracy of 99%.

of interest (the service slowdowns) occur at these en-
tities. An event is fired in case the response time of
a service exceeds a threshold compared to its base-
line. Service slowdowns are very rare in comparison
to normal behavior: The data in our test set has a
class imbalance of 99.74% to 0.26%.

Host Disk Network

CPU idle [%] Space avail. [b] Bytes recv. [b/s]
CPU system [%] Space used [b] Bytes sent [b/s]
CPU load [c] Space free [%] Recv. packets [/s]
CPU user [%] Read bytes [b/s] Sent packets [/s]
CPU IO wait [%] Write bytes [b/s] Recv. dropped [/s]

Page Faults [/s] Read ops. [/s] Sent dropped [/s]

MEM avail. [%] Write ops. [/s] Recv. errors [/s]
MEM avail. [b] Read time [ms] Sent errors [/s]
MEM used [b] Write time [ms] Recv. util. [%]

SWAP avail. [b] Util. time [%] Sent util. [%]

SWAP used [b] Queue length [c]

Inodes avail. [%]

Inodes total [c]

Table 1: Metrics for each entity type with units as
subscripts (/s = per second, b = bytes, c = count).
Underlined metrics indicate our selected subset.

3 Data Preparation

We used an enhanced version of the framework pre-
sented in [6] to process the data with various config-
uration options. Evaluating all possible configuration
options is practically infeasible, so we selected a sub-
set of these configurations. Some configurations are
fixed while others change in different test runs.

3.1 Fixed Configurations

Training set sampling. For each system, we created a
sample right before every event timestamp, optionally
augmenting the sample (see below), yielding p positive
samples in total. Afterwards, we created n = p neg-
ative samples at random timestamps where no event
occurred. This step yielded a balanced training set.

Test set sampling. For each system, we stepped
through the entire observation period and created a
sample for every 60 minute interval. If an event oc-
curred within the following 60 minutes, we labeled the
sample as positive, otherwise as negative. This re-
sulted in an unbalanced, realistic input test set which
can be expected in real-world scenarios.

Aggregation. For every sample, we aggregated the
data by storing the minimum, maximum, average,
standard deviation, median and slope of these obser-
vation windows as feature vectors in a CSV file.

3.2 Grid-searched Configurations

Data subset [subset]. We investigated two options:
First, we used all 34 metrics. Secondly, we selected
a subset of 10 metrics (underlined in Table 1). We
chose this subset based on aggregate metrics that still

cover the most relevant information (e.g., CPU idle =
100% − system − user − IO wait). We also discarded
metrics with too much missing data (e.g., disk read
and write times) as well as metrics which are nearly
constant throughout the observation period and are
not significantly Pearson-correlated with events (e.g.,
0 for sent and received network errors).

Observation window [win]. When creating a sam-
ple at a given timestamp, we took the preceding 10,
30 and 60 minutes of raw data.4

Standardization [standardize]. To show whether
our results improve, we standardized every data point
before training our models, i.e., for every metric m,
we calculated xm = xm−µm

σm
, where µm and σm are

the mean and the standard deviation.
Augmentation [augment]. Since our ML models

are trimmed to accuracy, our training set must be
balanced. However, due to the enormous class im-
balance in our data, simply creating a negative sam-
ple for every positive sample (i.e., randomly choosing
only as many negative samples as there are positive
ones = random under-sampling) is problematic. The
main issue is that the few negative samples most likely
do not sufficiently represent the negative data distri-
bution. Therefore, we decided to also over-sample
our positive data by including the time-warp aug-
mentation suggested in [5]. Time-warping randomly
shifts the timestamps of an observation window by
a slight amount, e.g., from t =

y = [0.00 1.00 2.00 3.00 4.00
5 7 5 8 7]

to t =
y = [0.00 1.01 1.97 3.02 4.00

5 7 5 8 7] , and then reconstructs
the values of the original timestamps via interpola-
tion, e.g., t =

y = [0.00 1.00 2.00 3.00 4.00
5 6.98 5.09 7.94 7] . We still used

the same random under-sampling by creating equally
many random negative samples, but with α augmen-
tations, we requested α times more negative samples,
thereby significantly increasing the probability to get
a representative portion of the negative data distribu-
tion. We set α to 250 for a drastically lowered class
imbalance of about 55% to 45%.

4 Evaluation

Since we augmented our training data up to 250 times
and our test set is based on a sliding window (unbal-
anced, real-world scenario), we created substantially
more samples. Due to limited hardware resources,
we thus only selected 50 independent systems with
data over an observation period of 18 days. We split
this period into 18 day-sized parts for each system
and exported both the training set and the test set.
We then applied day-based cross-validation, where we
took 17 days from the training set for training and the
(non-overlapping) remaining day from the test set for
testing, yielding a total of 18 runs.

We used a random forest classifier with 100 estima-
tors as our ML prediction model for service slowdown
events. To avoid overfitting on larger systems, we bal-

4We chose the values for comparability with previous studies
and in accordance with domain experts.

2

w
in subset ¬ subset

augment ¬ augment augment ¬ augment

st
a
n
d
a
rd
iz
e 10

.0981 ± .049

.0852 ± .037

.068± .045

.061± .030

.101± .041

.086± .035

.087± .037

.068± .026

30
.093± .051

.083± .035

.081± .038

.066± .028

.103± .044

.089± .034

.098± .044

.074± .030

60
.088± .044

.081± .034

.080± .041

.064± .027

.082± .049

.078± .036

.080± .053

.065± .033

¬
st
a
n
d
a
rd
iz
e 10

.090± .046

.082± .036

.074± .038

.062± .026

.099± .047

.085± .037

.081± .052

.066± .033

30
.097± .048

.086± .036

.086± .052

.069± .033

.092± .047

.082± .036

.085± .046

.069± .032

60
.075± .047

.074± .035

.072± .052

.061± .031

.084± .049

.077± .036

.083± .046

.066± .030

Table 2: 1 = MCC and 2 = F1-score of all config-
uration combinations showing the mean ± standard
deviation of the 18 runs (the observation window size
is abbreviated with “win”, the negation ¬ means that
a configuration is not active). We report the results
on the test set. Underlined = best scores.

anced the samples so that every system in the training
set is equally represented. Table 2 lists all configura-
tion combination results. Before calculating our eval-
uation metrics, we normalized the confusion matrix
entries based on the sample count of each system, to
not distort the results in favor of larger systems. We
chose the F1-score and the Matthews correlation coef-
ficient (MCC) as evaluation metrics due to our unbal-
anced data setting. Both are higher-is-better metrics,
with the F1-score ∈ [0, 1] and the MCC ∈ [−1, 1].

Clearly, the performance of the ML model on real-
world data is rather poor and unusable in practice.
With a maximum MCC of 0.103 and F1-score of 0.089,
we are only slightly better than a random classifier,
which is disappointing. Selecting only a subset of data
does not bring any benefits, nor do standardization or
different window sizes. Augmenting the data seems to
improve the results, but unfortunately, due to the the
high standard deviations, it is not statistically signifi-
cant (t-test, α = 0.05) except for one pair of F1-scores.

5 Conclusion and Discussion

The experiences reported in this paper show that test-
ing a multi-system event prediction approach based on
infrastructure monitoring data with an unbalanced,
real-world setting yields unacceptably poor results
compared to a balanced setting. Overall, our data
preprocessing steps did not improve the prediction
quality. In a single case, we could obtain a significant
improvement with data augmentation, however, not
to an extent that it would be usable. We hope that
other researchers who are working in a similar direc-
tion can benefit from the findings in this paper, such
as to review initial results with care as they might not
appropriately represent a real-world scenario.

There are many aspects to discuss that would re-
quire a comprehensive analysis on their own. First,
we cannot be sure that every model and every con-
figuration would lead to the same results. There are
simply far too many options to be tested in reason-
able time. We used a random forest classifier for
comparability reasons with our previous studies and
also because it does not have many hyper-parameters.
Naturally, there exist a plethora of other models and
entirely different approaches altogether, which could
again be evaluated with various settings and configu-
rations. This also includes endless possibilities to pre-
process the time series data, such as detrending and
deseasonalizing, which would definitely make sense to
investigate. Furthermore, there is ultimately the issue
that we cannot be sure that the data really contains
information from which the events can be predicted.
If they do not, there is no model capable of predicting
those events. Finally, the supervised approach may
not be the best for such a complex problem. In future
work, we will investigate normal time series behavior
and check for any discrepancies indicating such events.

Acknowledgements

The financial support by the Austrian Federal Min-
istry for Digital and Economic Affairs and the Na-
tional Foundation for Research, Technology and De-
velopment is gratefully acknowledged.

References

[1] L. Breiman. “Random Forests”. In: Machine
Learning 45.1 (2001).

[2] V. Chandola, A. Banerjee, and V. Kumar.
“Anomaly Detection: A Survey”. In: ACM Com-
put. Surv. 41.3 (2009).

[3] E. A. Garcia and H. He. “Learning from Imbal-
anced Data”. In: IEEE Transactions on Knowl-
edge & Data Engineering 21.09 (2009).

[4] F. Salfner, M. Lenk, and M. Malek. “A Survey
of Online Failure Prediction Methods”. In: ACM
Comput. Surv. 42.3 (2010).

[5] T. T. Um et al. “Data Augmentation of Wearable
Sensor Data for Parkinson’s Disease Monitoring
Using Convolutional Neural Networks”. In: Pro-
ceedings of the 19th ACM Int’l. Conf. on Multi-
modal Interaction. 2017.

[6] A. Schörgenhumer et al. “A Framework for Pre-
processing Multivariate, Topology-Aware Time
Series and Event Data in a Multi-System Envi-
ronment”. In: 2019 IEEE 19th Int’l. Symp. on
High Assurance Systems Engineering. 2019.

[7] A. Schörgenhumer et al. “Can We Predict Perfor-
mance Events with Time Series Data from Mon-
itoring Multiple Systems?” In: Companion of the
2019 ACM/SPEC Int’l. Conf. on Performance
Engineering. 2019.

3

	Introduction
	Data
	Data Preparation
	Fixed Configurations
	Grid-searched Configurations

	Evaluation
	Conclusion and Discussion

