
Using OPEN.xtrace and Architecture-Level Models to Predict

Workload Performance on In-Memory Database Systems

Maximilian Barnert, Adrian Streitz, Johannes Rank, Harald Kienegger, Helmut Krcmar
{maximilian.barnert, adrian.streitz, johannes.rank, harald.kienegger, krcmar}@in.tum.de

Chair for Information Systems
Technical University of Munich, 85748 Garching, Germany

Abstract

In-Memory Database Systems (IMDB) come into op-
eration on highly dynamic on-premise and cloud envi-
ronments. Existing approaches use classical modeling
notations such as queuing network models (QN) to
reflect performance on IMDB. Changes to workload
or hardware come along with a recreation of entire
models. At the same time, new paradigms for IMDB
increase parallelism within database workload, which
intensifies the effort to create and parameterize mod-
els. To simplify and reduce the effort for researchers
and practitioners to model workload performance on
IMDB, we propose the use of architecture level perfor-
mance models and present a model creation process,
which transforms database traces of SAP HANA to
the Palladio Component Model (PCM). We evaluate
our approach based on experiments using analytical
workload. We receive prediction errors for response
time and throughput below 4 %.

1 Introduction

New paradigms on In-Memory Database Systems
(IMDB) shift workload characteristics on traditional
Enterprise Resource Planning (ERP) systems. Ad-
justments to traditional workload come along with
dynamic placement on hardware within on-premise or
cloud environments. Available approaches for model-
ing performance on IMDB [2, 4, 7, 8, 9] require de-
tailed domain knowledge and high effort to extract
run time data as well as create and parameterize per-
formance models. The use of classical modeling nota-
tions such as queuing network models (QN) or being
of empirical nature [1] implies a rebuilding of the en-
tire model when changing one aspect (e.g., workload
or hardware), since all relevant aspects are included
in a single model. Especially modeling workload per-
formance is challenging for IMDB due to a large num-
ber of simultaneous query executions, complex query
execution plans and the utilization of many database
operators. We consider architecture level performance
models to be advantageous for reflecting workload per-
formance on modern IMDB due to a separate speci-
fication of workload, software architecture and hard-
ware. When single aspects (e.g., workload) change,

only affected submodels need to be adapted. To sim-
plify and reduce the effort for generating models, we
present a performance model creation approach on
the example of SAP HANA. The Palladio Compo-
nent Model (PCM) is used to generate architecture
level performance models. Query execution plans cap-
tured by proprietary database traces are extracted to
parameterize the models. To apply a common repre-
sentation of query execution plans in our approach, we
translate the traces to the OPEN.xtrace format [10].

The remainder of the paper is structured as follows:
Section 2 presents our performance model generation
approach. In Section 3, we evaluate our approach.
Section 4 gives an overview over related work. The
conclusion and future work are drawn in Section 5.

2 Model Generation Approach

Our performance model generation approach consists
of three steps, which are shown in Figure 1: (1) data
collection, (2) data transformation and (3) model gen-
eration. We implement a prototype of our approach
as plugin of the Palladio bench, which uses traces as
input, transforms them and creates the models.

Figure 1: Performance Model Generation Process

Data Collection. In the first step, the data to
create the performance models is collected during the
execution of the queries. We focus on query paral-
lelism in this work as it is a crucial factor for workload
performance on IMDB [2, 5, 6]. Parallelism is created
by simultaneously executing operators within a query
execution plan. We utilize Plan Traces of SAP HANA
in this work to receive information about control flow
and processed physical plan operators with millisec-
ond precision for read queries. The traces are stored
by SAP HANA on the file system using a proprietary
Extensible Markup Language (XML) structure.

Data Transformation. The second step consists
of translating the database traces to OPEN.xtrace



Figure 2: OPEN.xtrace Meta Model Modification
(adapted from [10, 11]])

[10] to receive a common representation of the cap-
tured query execution plans. We utilize the adapter
provided in one of our previous work [11] to trans-
form the Plan Traces to OPEN.xtrace. The adapter
uses a modified OPEN.xtrace meta model [11], which
enables to represent a query execution plan for a
database call (i.e., DatabaseInvocation). We further
extended the meta model in this work to support con-
current plan operator runs within a query execution
plan by adding the element ParallelizedMethodInvoca-
tion (Figure 2). In contrast to the MethodInvocation,
it calculates the exclusiveTime based on the children’s
maximum responseTime. We adjusted the adapter
from our previous work to support this extension.

Model Generation. In the final step, the data in
the OPEN.xtrace format is extracted to generate and
parameterize a PCM performance model instance.

In order to model the database system, a single
component is created in the PCM repository model.
An operation is added for each statement extracted
from the OPEN.xtrace data. The service effect spec-
ification (SEFF) of the operation defines the activ-
ities and resource demands within the statement’s
query execution plan. The assigned plan operators
are mapped to InternalActions in the SEFF. The op-
erator’s run time behavior is reflected by the resource
demands CPU and delay. As fork behavior supports
the modeling of query parallelism on IMDB [2, 4, 7],
we use ForkActions with synchronized ForkBehaviors
to represent concurrent plan operator executions in
PCM. Figure 3 shows an example where the two op-
erators PlanOperatorA and PlanOperatorB are pro-
cessed in parallel. To limit the number of simultane-
ously active queries and operators on the database as
a whole, two passive resources can be adjusted to the
thread pool settings on the referenced system.

To model the multi core environment of an IMDB,
we use a network of processor sharing queues [2, 4, 7].
Our implementation in PCM consists of a CPU and
delay resource with the scheduling policies Processor-
Sharing. The number of replicas is adjusted to the
total logical cores on the referenced system.

Database workload can be modeled in the PCM
usage model. A query execution is mapped to an
EntryLevelSystemCall element, which is linked to the
statement’s SEFF. Currently, this model is generated

Figure 3: SEFF of Concurrent Plan Operator Runs

automatically for the workload used in this paper. For
other database workloads, it can be adjusted before
being used for prediction.

3 Evaluation

We evaluate our approach by generating performance
models for the TPC benchmark H (TPC-H). Our test
environment consists of a single tenant database on a
SAP HANA 2.0 with support package stack (SPS) 2.
The database runs virtualized using a logical partition
(LPAR) on an IBM Power E870 server with 2 central
processing units (CPU), eight-thread SMT mode (i.e.,
16 logical cores) and 250 GB RAM.

We measured throughput, response time per query
set and CPU utilization for the TPC-H workload using
the openly available CH-benCHmark implementation
[5]. It creates a data set, initializes the database in a
column store and executes the set of 22 TPC-H queries
sequentially. We parameterize the benchmark using
100 warehouses, a single analytical client, a warm-up
time of 120 seconds and a test phase of 900 seconds.
We modified the implementation to capture query re-
sponse times, too. The CPU utilization is traced using
the top command with a refresh interval of 1 second.
To vary parallelism during query runs, we adapted the
database configuration by limiting the number of con-
currently active operators (P) within a statement to
a maximum of 1, 4 and 16.

Afterwards, we created performance models for the
three scenarios using our software prototype. The
Plan Traces are captured for isolated TPC-H query
runs separated from our measurements. The simu-
lation engine SimuCom of PCM is utilized to evalu-
ate the accuracy of the created models. The simula-
tion results are compared to the measurements. Fig-
ure 4 presents the measured throughput (MT), simu-
lated throughput (ST), measured mean response time
(MMRT), simulated mean response time (SMRT),
measured mean CPU utilization (MMCPU) and sim-
ulated mean CPU utilization (SMCPU). As shown in
Table 1, the simulation predicts the throughput with
relative prediction error rates between -2.14 % and
1.30 %. For simulating the response time, we receive

2



Figure 4: Measured and Simulated Results

error rates between -1.29 % and 3.36 % compared to
average errors of 6 % [7], 8 % [4] and 25 % [2] presented
for existing monolithic models. Simulating CPU uti-
lization returns (relative) high error rates up to 72.18
%, which results from a difference of 7.01 to 12.07 %
for a maximum intra-query parallelism of 1.

Table 1: Relative Prediction Errors

P Throughput Response Time CPU Util.

1 -0.67 % 1.44 % 72.18 %
4 -2.14 % 3.36 % 45.01 %
16 1.30 % -1.29 % -24.34 %

4 Related Work

Traditional research on workload performance focuses
on disk-based databases, while Merkle and Stier [3]
apply PCM to reflect database locks. For IMDB,
Schaffner et al. [1] use an empirical model excluding
intra-query parallelism to predict query response time
for SAP TREX server clusters. Other approaches
are based on monolithic performance model notations.
Wust et al. [6] use a QN to analyze the impact of
a single query’s sub tasks on another query’s run
time. Other authors [2, 4, 7] incorporate thread par-
allelism into a QN to simulate the performance for
long running queries on SAP HANA. It is extended
to map tenant interference and main memory [8, 9].
In contrast to our work, the approaches utilize coarse
grained thread samples on the Operating System (OS)
and the model creation implies profound domain spe-
cific knowledge. The parameterized models are valid
for a preset queue of queries and threads.

5 Conclusion and Future Work

This paper presents an architecture level model cre-
ation approach based on OPEN.xtrace and PCM to
predict workload performance on IMDB. Our current
implementation is applicable for SAP HANA. Simu-
lating TPC-H workload returns prediction errors be-
low 4 % for throughput and response time. In order
to reduce error rates, the next step in our work will
be to optimize modeling of CPU utilization by adding
information about the breakdown of plan operators
into subtasks. In addition, we will parameterize our

models using aggregated performance data including
main memory. Furthermore, we intend to make our
prototype executable outside of the Palladio bench to
enable performance prediction on run time.

References

[1] J. Schaffner et al. “Predicting in-memory
database performance for automating cluster
management tasks”. In: 27th International Con-
ference on Data Engineering. IEEE, 2011.

[2] S. Kraft et al. “Wiq: work-intensive query
scheduling for in-memory database systems”.
In: 5th International Conference on Cloud Com-
puting. IEEE, 2012, pp. 33–40.

[3] P. Merkle and C. Stier. “Modelling database
lock-contention in architecture-level perfor-
mance simulation”. In: Proceedings of the 5th
ACM/SPEC international conference on Per-
formance engineering. ACM, 2014, pp. 285–288.

[4] K. Molka et al. “Memory-aware sizing for in-
memory databases”. In: Network Operations
and Management Symposium. IEEE, 2014.

[5] I. Psaroudakis et al. “Scaling up mixed work-
loads: a battle of data freshness, flexibility,
and scheduling”. In: Technology Conference
on Performance Evaluation and Benchmarking.
Springer, 2014, pp. 97–112.

[6] J. Wust et al. “Concurrent Execution of
Mixed Enterprise Workloads on In-Memory
Databases”. In: Database Systems for Ad-
vanced Applications. Cham: Springer Interna-
tional Publishing, 2014, pp. 126–140.

[7] K. Molka and G. Casale. “Experiments or sim-
ulation? A characterization of evaluation meth-
ods for in-memory databases”. In: 11th Interna-
tional Conference on Network and Service Man-
agement. IEEE, 2015, pp. 201–209.

[8] K. Molka and G. Casale. “Contention-Aware
Workload Placement for In-Memory Databases
in Cloud Environments”. In: ACM Trans.
Model. Perform. Eval. Comput. Syst. 2.1 (2016).

[9] K. Molka and G. Casale. “Efficient Memory
Occupancy Models for In-memory Databases”.
In: 24th International Symposium on Model-
ing, Analysis and Simulation of Computer and
Telecommunication Systems. IEEE, 2016.

[10] D. Okanović et al. “Towards Performance Tool-
ing Interoperability: An Open Format for Rep-
resenting Execution Traces”. In: Proceedings of
the 13th European Workshop on Performance
Engineering. LNCS. Springer, 2016.

[11] M. Barnert et al. “Converting Traces of In-
Memory Database Systems to OPEN.XTRACE
on the Example of SAP HANA”. In:
Softwaretechnik-Trends 37.3 (2017).

3


	Introduction
	Model Generation Approach
	Evaluation
	Related Work
	Conclusion and Future Work

