
Selecting Time Series Clustering Methods based on Run-Time Costs

Andreas Schörgenhumer1, Paul Grünbacher2, Hanspeter Mössenböck3

{firstname.lastname}@jku.at
1 Christian Doppler Laboratory MEVSS, Johannes Kepler University Linz, Austria

2 Institute for Software Systems Engineering, Johannes Kepler University Linz, Austria
3 Institute for System Software, Johannes Kepler University Linz, Austria

Abstract

Clustering time series, e.g., of monitoring data from
software systems, can reveal important insights and
interesting hidden patterns. However, choosing the
right method is not always straightforward, especially
as not only clustering quality but also run-time costs
must be considered. In this paper, we thus present an
approach that aids users in selecting the best meth-
ods in terms of quality as well as computational costs.
Given a set of candidate methods, we evaluate their
clustering performance and robustly measure their ac-
tual run times, i.e., the execution time on a specific
machine. We evaluate our approach using data from
the UCR time series archive and show its usefulness
in determining the best clustering methods while also
taking costs into account.

1 Introduction

Clustering time series data provides rich information
and opportunities, such as finding common patterns
or general insights in the data landscape, and devel-
oping tools that can be used within clusters. Espe-
cially in large software systems, where a huge number
of time series is extracted from multiple components,
this can prove to be immensely useful. Commonly, re-
searchers propose either clustering based on the raw
time series or based on features [3], i.e., characteristics
that describe certain properties of time series. Choos-
ing which performs better for given datasets is not
easy, especially because there are also multiple clus-
tering models and various ways to post-process the
data, which results in numerous methods. One pos-
sible solution is to run all combinations on represen-
tative or comparable data beforehand, check which
one performed best and then use this best method
for future data. In an industrial setting, however,
run-time performance typically has to be taken into
account since computations are often outsourced to
cloud-computing infrastructures, which comes with
additional costs. Simply using the highest perform-
ing method might thus not be the answer as it might
be too slow and therefore too expensive.

In this paper, we present a way to incorporate a
run-time cost model into the assessment of the clus-

tering quality, which allows end users to determine the
best methods given the additional information of their
execution time. We accomplish this by measuring the
actual run time of clustering models, feature calcula-
tions and post-processing options, and then merging
those run times with the achieved clustering quality.
Given some user-defined quality as well as run-time
performance thresholds, we can easily extract the ac-
tually relevant methods. We evaluate our approach
using the time series characteristics and groups intro-
duced in [6] as well as the datasets from the UCR time
series archive [4].

2 Time Series Characteristics (TSC)

Since understandability and interpretability are bene-
ficial when dealing with time series clustering to better
comprehend the resulting clusters, we use the follow-
ing groups of characteristics listed in Table 1:

Group Subgroup #Feat.

Distributional

Dispersion 3
Dispersion (blockwise) 10
Duplicates 5
Distribution 16

Temporal

Dispersion 2
Dispersion (blockwise) 10
Similarity 17
Frequency 17
Linearity 44

Complexity

Entropy 13
Complexity (miscellaneous) 5
Flatness 15
Peaks 8

Statistical Tests - 2

Table 1: TSC groups (cf. [6] for details). The number
of features is the result of parameterization of some
base characteristics (e.g., different block sizes).

The number of features per group determines the
input size (n × p, where n is the number of samples
and p the number of features) for the different clus-
tering models and post-processing options, which in
turn affects the run-time measurements.

3 Approach

For time series data with n samples of length t and a
given set of methods, the goal is to find the one best
suited for clustering while also considering run-time
costs. A method is a triplet that contains the cluster-
ing model, the used features (e.g., the groups listed
in Table 1 with varying p features or the raw data)
and the optional post-processing (which we refer to as
variants) of these features. To assess the clustering
quality, we require labeled data, where we calculate
some external evaluation metric with the predicted
clusters compared to the true clusters. Additionally,
we measure the actual run time of all methods, i.e.,
the actual models, actual features and actual variants
on a concrete machine, which yields the actual run-
time costs that should be expected for future data.
In contrast to evaluating the quality, randomly gen-
erated data suffices since the run times depend on
the parameters t, n and p and not on the actual val-
ues, which is useful as we can easily adapt them to
model future data. We use the actual run times rather
than estimations which try to generalize. For exam-
ple, the problem with run-time complexities is that
similar code that results in identical estimates can still
lead to run-time differences: Compiler optimizations,
language intrinsics (e.g., loop iteration vs list compre-
hension in Python) or language mixtures (e.g., Java
Native Interface) can cause a heavy impact.

To get robust run-time measurements, we execute
the corresponding code (feature and variant calcula-
tion, model fitting) r times resulting in a set of mea-
surements R. The actual run time is then calculated
as the mean over a specified quantile subset of R,
more formally: 1

|R′|
∑

r∈R′ r with R′ = {r ∈ R | r ≥
ql(R)∧ r ≤ qu(R)}, where ql is the lower quantile and
qu the upper quantile. We measure the run times of
the method-triplet parts as follows:

(i) Features: We measure all features of each group
with n samples of length t, i.e., the run time of the dif-
ferent groups in Table 1 is simply the sum of their fea-
ture calculation run times. Depending on whether we
want to address parallelization, we can enable multi-
processing with a fixed number of processes, where
the parallelization is done on a per-sample basis.

(ii) Variants: For each variant and feature group
with p features, we measure the time it takes to post-
process the n samples, i.e., the run time varies be-
tween different numbers of features.

(iii) Models: For each model and feature group with
p features, we measure the time it takes to fit this
model on the n samples, i.e., the run time varies be-
tween different numbers of features. If models support
parallelization, we can choose to enable it.

Once we obtain the clustering quality and cost
results, we can represent them with a quality-cost
trade-off graph, where we plot the evaluation metric
of the tested methods on the x-axis and the corre-
sponding measured run time on the y-axis. We also

introduce an optionally specifiable quality-threshold
and/or cost-threshold, which help to identify those
methods that are of interest to the user.

Note that evaluating both the quality and run-time
costs does require significant run time in itself, how-
ever, this can be done in an offline phase.

4 Evaluation

We chose the publicly available UCR time series
archive [4] to evaluate our approach. The archive
contains 128 labeled datasets with varying time se-
ries lengths and number of samples, split into train-
ing and test data. Since clustering is an unsupervised
task, we merged the training and test data to utilize
the full dataset. As the external evaluation metric,
we selected the adjusted Rand Index [1] with values
between [−1, 1], where −1 indicates the worst possible
clustering, 0 random clustering and 1 perfect cluster-
ing. For the run-time measurements, we set the num-
ber of runs to r = 30 and the quantile to ql = 0.1 and
qu = 0.9. Finally, we selected the following methods
to test for quality and run-time cost:

(i) Features: We tested all 4 groups and 13 sub-
groups (varying p) as listed in Table 1 (cf. [6] for de-
tails), as well as all groups merged (= all TSC), which
resulted in 18 TSC groups. Moreover, we also ran the
raw time series data (p = t).

(ii) Variants: For our TSC groups, we had the fol-
lowing options: dropping correlated features, clipping
data to [0, 1], logarithm-based clipping (scaling each
value v above 1 with 1+log10(v) and each value v be-
low 0 with − log10(|v|+1)) and tangent-based clipping

(scaling each value v with tanh(2·v−1)
2·(tanh(1)+1)). We also com-

bined dropping with the clipping options, and we also
tested not to do any post-processing (= 8 variants in
total). The raw time series were not post-processed.

(iii) Models: We use k-means (default scikit-
learn implementation, parallelized), BIRCH (default
scikit-learn implementation) and agglomerative clus-
tering (default scipy linkage implementation) in
three variants (Ward’s linkage with Euclidean dis-
tance, weighted average linkage with Euclidean and
with cosine distance), which resulted in 5 models.

In total, we created 18 · 8 · 5 (TSC) + 5 (raw)
= 725 methods. All code was written with Python
3.6.10, and the required libraries (feature and vari-
ant calculation, model fitting) had the following ver-
sions: scikit-learn 0.22.1, tsfresh 0.15.1, pandas 1.0.3,
numpy 1.18.1, scipy 1.4.1, nolds 0.5.2, arch 4.13, joblib
0.14.1. Everything was run on an Intel Xeon E3-1245
v3 3400Mhz CPU with 16GB DDR3 1600MHz mem-
ory, and we set the number of parallel processes/jobs
to 4. Due to paper length constraints, we only present
the results of a single UCR dataset, namely Electric-
Devices, with n = 16637 and t = 96. For simplicity,
we used the same number of samples for measuring
the run times, however, we could use any arbitrary
n, if we expect future data to come in larger batches,

2

0.0 0.1 0.2 0.3 0.4
ARI

0

100

200

300

400

ru
n

tim
e

[s
]

Model Features Variant ARI Run time [s]

l complexity 0.35 98.25

l c entropy 01 d 0.32 44.10

k c entropy log d 0.32 35.51

l d dispersion b log 0.32 15.30

l d dispersion b 01 0.32 15.27

l t dispersion b 01 0.31 14.49

k t dispersion b tan d 0.31 6.55

k t dispersion b tan 0.31 6.53

k d dispersion b log 0.31 6.38

k d dispersion b 01 d 0.31 6.38

k d dispersion b 01 0.31 6.36

Figure 1: Quality-cost trade-off graph of dataset ElectricDevices with the relevant methods (ARI ≥ 0.3, run time
≤ 100 seconds) highlighted with yellow background, where the connecting line is the Pareto front. The table on
the right lists these methods. Abbreviations: models: l = linkage, k = k-means; features: group(subgroup)
(group abbreviated to first letter for subgroups), b = blockwise; variants: empty = no post-processing, 01 =
clipping to [0, 1], tan/log = tangent-/logarithm-based clipping, d = dropping of correlated features.

for example. The results after running all 725 meth-
ods are shown in Figure 1, including a lower-limit
quality-threshold (ARI) of 0.3 and an upper-limit
cost-threshold of 100 seconds (chosen for demonstra-
tional purposes) that both define the methods con-
sidered relevant. Out of these relevant methods, we
calculate the Pareto front, which we show in more de-
tail in the table next to the plot (sorted by the ARI).

We can now easily determine, which method we
want to choose for future data, considering both
clustering quality as well as run-time costs. For
dataset ElectricDevices, the results indicate that out
of the relevant methods, hierarchical clustering (link-
age) with the complexity feature group performed
best. However, with only a slight decrease in quality
(< 0.05 ARI) but a significant decrease in compu-
tation time, we can also use the entropy subgroup
(over 2x faster) or even k-means with distributional
or temporal dispersion (blockwise) subgroups (over
15x faster). Ultimately, the users must choose de-
pending on which metric is more important to them.

5 Conclusion

In this paper, we presented how to choose the
best clustering methods (triplets of features, post-
processing options and clustering models) while also
considering their actual run-time costs. For a given
labeled dataset and a set of methods, our approach
calculates any external clustering score (such as the
adjusted Rand index) and robustly measures the ac-
tual run time. Using a quality-cost trade-off graph,
we can visualize the results and can easily identify
those methods that performed well on the dataset but
also are within the computational budget. We demon-
strated our approach’s usefulness on a UCR dataset.

For future work, we could extend our approach with
the concepts of meta-learning [2, 5], where we could

predict both the expected quality as well as the run-
time performance of our methods to replace our com-
putationally expensive offline search. However, pre-
dictions of this sort are not trivial and could easily
lead to unreliable results.

Acknowledgements

The financial support by the Austrian Federal Min-
istry for Digital and Economic Affairs, the National
Foundation for Research, Technology and Develop-
ment, and Dynatrace is gratefully acknowledged.

References

[1] L. Hubert and P. Arabie. “Comparing Parti-
tions”. In: Journal of Classification 2.1 (1985),
pp. 193–218.

[2] P. B. Brazdil, C. Soares, and J. P. Da Costa.
“Ranking Learning Algorithms: Using IBL and
Meta-Learning on Accuracy and Time Results”.
In: Machine Learning 50.3 (2003), pp. 251–277.

[3] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y.
Wah. “Time-series clustering - A decade review”.
In: Information Systems 53 (2015), pp. 16–38.

[4] H. A. Dau et al. The UCR Time Series Classi-
fication Archive. https://www.cs.ucr.edu/

~eamonn/time_series_data_2018/. 2018.

[5] B. A. Pimentel and A. C. de Carvalho. “Sta-
tistical versus Distance-Based Meta-Features for
Clustering Algorithm recommendation Using
Meta-Learning”. In: Procs. of the 2018 Int’l Joint
Conf. on Neural Networks. IEEE. 2018, pp. 1–8.

[6] A. Schörgenhumer et al. Time Series Character-
istics. https://github.com/cdl-mevss-m3/
Time-Series-Characteristics. 2020.

3

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://github.com/cdl-mevss-m3/Time-Series-Characteristics
https://github.com/cdl-mevss-m3/Time-Series-Characteristics

	Introduction
	Time Series Characteristics (TSC)
	Approach
	Evaluation
	Conclusion

