
Toward Efficient Scalability Benchmarking of Event-Driven

Microservice Architectures at Large Scale

Sören Henning, Wilhelm Hasselbring
{soeren.henning,hasselbring}@email.uni-kiel.de

Software Engineering Group, Kiel University, Germany

Abstract

Over the past years, an increase in software archi-
tectures containing microservices, which process data
streams of a messaging system, can be observed. We
present Theodolite, a method accompanied by an
open source implementation for benchmarking the
scalability of such microservices as well as their em-
ployed stream processing frameworks and deployment
options. According to common scalability definitions,
Theodolite provides detailed insights into how re-
source demands evolve with increasing load intensity.
However, accurate and statistically rigorous insights
come at the cost of long execution times, making it
impracticable to execute benchmarks for large sets
of systems under test. To overcome this limitation,
we raise three research questions and propose a re-
search agenda for executing scalability benchmarks
more time-efficiently and, thus, for running scalability
benchmarks at large scale.

1 Introduction

A common practice in microservice-based archi-
tectures is letting microservices communicate in a
publish-subscribe manner via a dedicated messaging
system such as Apache Kafka. Regarding scalability,
this means microservices may not only scale with the
load at their REST endpoints, but also with the load
of incoming messages. To meet scalability require-
ments, microservices employ tools and frameworks,
which adopt streaming processing techniques, such
as Apache Kafka Streams. An essential idea here is
that individual microservices process (and potentially
store) only a certain portion of the data stream.

While a lot of research goes into advancing the un-
derlying principles for scalable stream processing [3],
there is only little research on developing metrics and
benchmarks for thoroughly evaluating the scalability
of stream processing microservices. Good benchmarks
have to fulfill requirements for relevance, reproducibil-
ity, fairness, verifiability, and usability [5]. In this pa-
per, we present our Theodolite scalability benchmark-
ing method, which is designed with special focus on
fulfilling these requirements. Further, we point out
necessary steps toward scalability benchmarks with
Theodolite at large scale in a time-efficient manner.

2 Theodolite Benchmarking Method

Our Theodolite benchmarking method [9] allows to
thoroughly benchmark the scalability of stream pro-
cessing frameworks for microservices as well as of de-
ployment options for such microservices.

2.1 Scalability Metric

Scalability describes the ability of a system to con-
tinue processing an increasing load with additional
resources provided [2]. To compare the scalability of
different systems under test (SUT), we therefore com-
pare how their resource demand evolves with increas-
ing load. Thus, our benchmarking method determines
a demand(intensity) function [4], mapping load inten-
sities to the resources which are required to handle
these load intensities. In the following, we specify the
terms “load” and “resources” in the context of event-
driven microservice architectures.

Load Theodolite focuses on microservices, which
are subject to a load of messages coming from a cen-
tral messaging system. This load can have multiple
dimensions, such as number of messages per unit time
or size of messages. Even though Theodolite supports
different load dimensions, we focus on scaling with the
amount of distinct message keys per unit of time1.
This key is used for data partitioning and, thus, the
major means for parallelizing stream processing tasks.

Resources Microservices are typically deployed in
(e.g., Docker) containers. Stream processing frame-
works support scaling microservices by simply deploy-
ing more containers and thus multiple microservice
instances. All necessary coordination and assignment
of data portions is automatically performed by the
framework. In this paper, we focus on horizontal scal-
ability. Thus, the amount of required resources corre-
sponds to the number of instances, which are required
to process all incoming messages in time.

2.2 Measurement Method

Our benchmarking method approximates the resource
demand function by creating a mapping of load in-
tensities to required instances for a given set of load

1The key typically refers to the domain object an event refers
to, such as the user ID when tracking user activities.



intensities. To do so, it also takes a set of number of
instances and experimentally tests for each load in-
tensity L and each number of instances I whether I
instances are able to handle load L. These test are
performed in isolated experiments as scalability does
not contain any temporal aspect [2]. The number of
necessary instances finally corresponds to the small-
est number of instances, which is able to handle load
intensity L.

The isolated experiments for assessing whether a
given amount of instances is able to handle a cer-
tain load intensity are called lag experiments. In these
experiments, we continuously monitor the record lag,
which is the number of messages added to the mes-
saging system but not being consumed yet by any
instance. As the record lag is subject to high fluc-
tuations, we apply linear regression to the time series
and, thus, fit a trend line. We consider the number
of instances as sufficient if the trend line’s slope does
not exceed a certain threshold.

The results of lag experiments may be significantly
influenced by external factors, such as container place-
ment or utilization of cloud servers. To increase sta-
tistical rigor [1], we thus allow repeating lag experi-
ments several times and check their summary statis-
tics against the configured threshold.

2.3 Provided Benchmarks

We provide four specification-based [5] benchmarks,
which represent typical use cases for stream processing
within microservices. These use cases are derived from
an Internet of Things analytics platform [6, 8] and
perform the tasks of storing messages to a database,
aggregating messages in a hierarchical manner, down-
sampling the message frequency, and aggregating mes-
sages based on temporal attributes. The use cases
are of different complexity and include typical stream
processing operations such as joins, aggregations, and
different types of windowing.

2.4 Benchmarking Framework

We provide implementations of all benchmarks for
Kafka Streams as well as our Theodolite benchmark-
ing framework as open source2. Our framework exe-
cutes the proposed benchmarking method in a cloud
infrastructure, operated by Kubernetes. It handles
deployment, scaling, and monitoring of all benchmark
components. This includes a distributed load genera-
tor, Apache Kafka as messaging system, and the ac-
tual SUTs, implementing our benchmarks.

3 Benchmarking at Large Scale

Theodolite allows to accurately assess the scalability
of microservices that apply stream processing. Specif-
ically, accuracy can be increased by testing more load
intensities and number of instances and by increas-
ing the number of repetitions. Increased benchmark

2https://github.com/cau-se/theodolite

accuracy, however, comes at the cost of significantly
increasing execution time. For example, evaluating a
single SUT for a single benchmark with 6 load inten-
sities, 10 numbers of instances, 5 minutes execution
time per experiment, and only 3 repetitions already
requires 15 hours. This makes scalability evaluations
for different benchmarks, stream processing frame-
works, and deployment options expensive in time or
resources. Therefore, an important challenge is to re-
duce the execution time for scalability benchmarks
while preserving the presented accuracy. In the fol-
lowing, we raise three research questions and propose
a research agenda to tackle this challenge.

3.1 Open Research Questions

RQ1: How can the scalability metric be measured
more efficiently? Our current measurement method
executes lag experiments for each combination of load
intensity and tested number of processing instances.
In particular, this includes experiments, whose results
are unlikely to have any influence on the resource de-
mand function. For example, if a certain load requires
many instances, then it is unlikely that a higher load
can be handled by only a few instances. We are thus
looking for a way to reduce the number of lag experi-
ments to be executed without significantly distorting
the resulting demand function.

RQ2: For how long should a single lag experiment
be executed? As we observe that the monitored record
lag fluctuates strongly, we compute a trend line over a
certain time period. However, to minimize the overall
benchmark execution time, also the lag experiment’s
execution time should be kept as short as possible.

RQ3: How many experiment repetitions are re-
quired? Theodolite executes benchmarks in a cloud
environment, which potentially causes significant vari-
ations among executions [7]. However, hundreds or
thousands of repetitions are impracticable due to the
execution time of single lag experiments as well as due
to the number of different lag experiments, which are
required to obtain the demand function.

3.2 Research Agenda

For RQ1: We are working on three heuristics, which
already evaluate results during a benchmark’s execu-
tion. Instead of running lag experiments for each load
intensity with each number of instances, these heuris-
tics apply a search strategy to find the number of re-
quired instances for each load intensity.

Heuristic H1 and H2 are based on the assumption
that with additional instances, processing capabilities
only improve. In other words, if I instances are able
to handle a certain load intensity, then also I + 1 in-
stances are able to handle that load. With H1, we
test instances in an increasing order and stop when we
find the first number of instances, which can handle
the tested load. Heuristic H2 applies binary search to

2

https://github.com/cau-se/theodolite


load

re
so

u
rc
e
s

(a) Without heuristic

load
re
so

u
rc
e
s

(b) Heuristic H1

load

re
so

u
rc
e
s

(c) Heuristic H2

load

re
so

u
rc
e
s

(d) Heuristic H3

Figure 1: Comparison of suggested heuristics

find the number of required instances. This method
is particularly advantageous if many numbers of in-
stances should be evaluated.

Heuristic H3 is based on the assumption that with
increasing load intensity the number of required in-
stances never decreases. Thus, if we find that load Lx

requires at least I instances, we can start testing next
larger load Lx+1 with I instances.

Figure 1 compares our suggested heuristics using
an exemplary benchmark execution. Each cell corre-
sponds to a lag experiment for a certain load intensity
and amount of resources, which is executed by the
respective heuristic. Green cells represent that the
tested resources are sufficient to handle the respective
load, whereas red cells represent that the resources
are not sufficient. Framed cells indicate the lowest
sufficient resources per load intensity. The resulting
resource demand function is plotted in Figure 1a.

All heuristics are based on assumptions regarding
the scaling behavior of SUTs. We plan to evaluate the
individual assumptions for different SUTs to decide
whether the respective heuristics are applicable. If
this is the case, we also plan to combine heuristics to
further reduce the number of lag experiments.

For RQ2: We plan to conduct dedicated experi-
ments with different execution times. We expect that
with increasing execution time, the trend line’s slope
stabilizes. We therefore identify the smallest duration,
a lag experiment needs to obtain a trend line, which is
sufficiently close to this stable value. By determining
the necessary execution time for different resources,
load intensities, benchmarks, and SUTs, we expect to
assess the influence of parameters on the necessary ex-
ecution time. Thus, our benchmarking method could
potentially adjust the execution time per experiment.

For RQ3: With dedicated experiments, we plan to
quantify the scattering of lag trends among multiple
repetitions. Based on these results, we can also quan-
tify the statistical error when only conducting a few
repetitions. Again, these experiments should be per-
formed for different resources, load intensities, bench-
marks, and SUTs to increase the statistical validity
and to assess the influence of such parameters on scat-
tering.

4 Conclusions

With Theodolite, we present a metric, a measure-
ment method, and corresponding implementations for
benchmarking scalability of event-driven microservice
architectures. In order to increase benchmark accu-
racy as well as simply executing more benchmarks,
efforts must be made to reduce the benchmark exe-
cution time. Promising approaches in this regard are
reducing the number of lag experiments, the execu-
tion time of single lag experiments, and the number
of repetitions. Once these approaches are success-
fully implemented, different stream processing frame-
works and deployment options can be benchmarked
and compared to each other.

Acknowledgments This research is funded by the
German Federal Ministry of Education and Research
(BMBF) under grand no. 01IS17084B.

References
[1] A. Georges, D. Buytaert, and L. Eeckhout. “Statistically

Rigorous Java Performance Evaluation”. In: SIGPLAN
Not. 42.10 (2007).

[2] A. Weber et al. “Towards a Resource Elasticity Bench-
mark for Cloud Environments”. In: Proc. Int. Workshop
on Hot Topics in Cloud Service Scalability. 2014.

[3] T. Akidau et al. “The Dataflow Model: A Practical Ap-
proach to Balancing Correctness, Latency, and Cost in
Massive-scale, Unbounded, Out-of-order Data Process-
ing”. In: Proc. VLDB Endow. 8.12 (2015).

[4] N. R. Herbst et al. “BUNGEE: An Elasticity Benchmark
for Self-Adaptive IaaS Cloud Environments”. In: Proc.
IEEE/ACM International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems. 2015.

[5] J. v. Kistowski et al. “How to Build a Benchmark”. In:
Proc. ACM/SPEC International Conference on Perfor-
mance Engineering. 2015.

[6] S. Henning, W. Hasselbring, and A. Möbius. “A Scalable
Architecture for Power Consumption Monitoring in In-
dustrial Production Environments”. In: Proc. IEEE In-
ternational Conference on Fog Computing. 2019.

[7] A. Papadopoulos et al. “Methodological Principles for
Reproducible Performance Evaluation in Cloud Comput-
ing”. In: IEEE Trans. on Software Engineering 01 (2019).

[8] S. Henning and W. Hasselbring. “Scalable and Reliable
Multi-Dimensional Sensor Data Aggregation in Data-
Streaming Architectures”. In: Data-Enabled Discovery
and Applications 4.1 (2020).

[9] S. Henning and W. Hasselbring. “Theodolite: Scalabil-
ity Benchmarking of Distributed Stream Processing En-
gines”. In: arXiv preprints (2020). arXiv: 2009.00304.

3

http://arxiv.org/abs/2009.00304

	Introduction
	Theodolite Benchmarking Method
	Scalability Metric
	Measurement Method
	Provided Benchmarks
	Benchmarking Framework

	Benchmarking at Large Scale
	Open Research Questions
	Research Agenda

	Conclusions

