
Enhanced execution trace abstraction approach using social network

analysis methods

Ji Wang
jw17tl@brocku.ca

Brock University, St. Catharines, Canada

Naser Ezzati-Jivan
nezzati@brocku.ca

Brock University, St. Catharines, Canada

Abstract

In this paper, we propose an improvement in system
execution tracing by applying social network analysis
techniques on the trace data. We perform a 3-step
analysis: collection of trace data on operating system
kernel; community analysis on the data; and PageR-
ank algorithm within each community. The proposed
analysis focused on the following problems: useless
information contained in the data and the enormous
size of the data. We propose two use cases: one on
kernel trace filtering and the other on virtual machine
clustering. Our evaluation shows that the proposed
method provided a concise and more comprehensive
view of the trace data. This can help shorten the time
and assist in building infrastructural functions in an-
alyzing system execution.

1 Introduction

Tracing has been a revolutionary way to analyze
and debug operating systems. It provides complete
and exhaustive information about system executions.
Most of the time, the underlying challenges in tracing
are the huge size of data and lacking of functions in an-
alyzing tools. There have already been several differ-
ent methods to address these challenges: noise filter-
ing, data abstraction, profiling and parameter based
abstraction.

This paper focuses on the trace abstraction
method, in which we employ social network analysis
technique to highlight most important system entities.
We mimic the algorithms and analysis in this tech-
nique by treating entities in tracing data as people and
communities in social media data: leave out unimpor-
tant entities and highlight the significant ones.

To start, we collect tracing data from a certain op-
erating system. Then the collected data is used to
generate a view of the system executions. At the end,
we apply social media network analysis on the data
and modify the view accordingly.

Contributions of this work are: adopting and ap-
plying social network analysis on system kernel trac-
ing data and showing that social network analysis al-
gorithms are useful in system analysis.

2 Methodology

The proposed method is comprised of several steps:
data collection and pre-processing, social network con-
struction, community analysis, pageranking and fi-
nally visualization. Architecture of the proposed
method is shown in Figure 1.

Figure 1: Architecture of the proposed method

2.1 Data collection and pre-processing

We firstly obtained trace data from a Linux operating
system. To achieve this, we use an open-source tool
named LTTng[2]. This tool can recognize and extract
traces of various types: kernel space and user space
applications in different programming languages.

Secondly, we import the trace data into another
open-source tool called Trace Compass[5] which is an
open source application to analyze tracing data. The
trace extracted on kernel level contains enormous de-
tails of system execution. In preparation for data
modelling and analysis, we specify the events of in-
teractions, which we collect from trace data.

2.2 Constructing thread interaction’s
graph

We define a social network graph G(V,E) in system
analysis context as follows: a graph G is comprised
of a set of nodes V and a set of edges E. In this con-
text, a node represents a thread existing in the trace
data. An edge represents an interaction between two
threads. The metrics are shown in Table 1.

Our algorithm iterates over all trace events
and processes the data correspondingly to their
types. Each sched switch event adds an edge
V prev tid→V next tid to the graph.

In the context of this particular analysis, G is a
directed and weighted graph consisting of threads as
nodes and interactions as edges. We construct an ad-
jacency matrix M of G as follows: the matrix’s size is

Table 1: The parameters used in the graph structure

Metric Description

Vi A thread
Vi→Vj Edge of interaction from Vi to Vj
wij (i 6=j) The weight of edge Vi→Vj

|V | × |V |. Each entry mV1,V2 marks the weight of the
edge from V1 to V2.

2.3 Graph community analysis

Once the weighted graph is created, a graph commu-
nity analysis algorithm is applied to partition nodes
into distinct modules. Here, we use the Louvain algo-
rithm [3] which has been widely used in many applica-
tions to identify the community structures in graphs.
This algorithm has the advantages of rapid conver-
gence, high modularity, and hierarchical partitioning.

The Louvain method consists of two phases. In
the first phase, the algorithm sequentially sweeps over
all vertices and moves them to one of their neighbors
based on the gain in the modularity cost function.
This iterative procedure continues until no movement
yields a gain.

In the second phase, these communities become su-
pervertices by aggregating each community into a sin-
gle node. Two supervertices are connected if there is
at least one edge between nodes of the corresponding
communities, in which case the weight of the edge be-
tween the two supervertices is the sum of the weights
from all edges between their corresponding partitions
at the lower level.

These two phases are then recursively applied to
the supergraphs in a hierarchical way. The algorithm
terminates until communities become stable. Typi-
cally, the Louvain algorithm converges very quickly
and can identify communities in a few iterations.

2.4 Ranking processes

In this step, each community is considered as a sep-
arate graph and processes within each partition are
ranked. The PageRank (PR) algorithm [1] is em-
ployed to assign a rank to each process. The idea is
to rank the processes that are more significant based
on interactions with other processes.

Let p and v be two processes in community c and
Ec the set of directed edges in c. The PageRank of p,
PRj(p), is defined using the following recursive for-
mula:

PRt(p) = α
∑

(p,v)∈Ec

PRt−1(v)

out− degree(v)
(1)

where α is a normalization factor for the total rank
of all processes and t shows the iteration number. The
PageRank values are initialized as 1

n for each process,
where n is the number of nodes in each community.

The PageRank values get updated in each iteration,
until it converges into a stable value.

3 Use case

In an operating system such as Linux, the kernel is re-
sponsible for accessing and managing resources. Due
to the fact that Trace Compass [5], the tracing tool
we use, collects everything at the kernel level, most of
the trace data will not have critical meaning at appli-
cation level. However, there is no simple way in Trace
Compass to filter out irrelevant data and to provide
an updated view of that.

In this work, we provide an implemented method to
better facilitate Trace Compass’s functions and inte-
grate everything using Trace Compass’s EASE script-
ing engine[5]. The work will cover data collection,
data processing and enhanced filtering. After the
work is done, users are provided an update view of
critical threads.

3.1 Trace data collection

The interactions between threads are traced using the
Linux Trace Toolkit Next Generation (LTTng) [2].
The tool is able to trace the kernel and applications
and we want the entire collection of executions done
at the kernel level.

3.2 Data processing using script

Trace Compass will provide default views such as
control flow and resources to us. We then create a
new JavaScript file within this workspace and name
it script.js. In the script, we firstly extract events
using Trace Compass’s analysis module. From the
event data we can search for certain event type and
extract the TID(thread ID), CPU(CPU number) and
PID(process ID) for further analysis. In order to per-
form community analysis, we make a directed and
weighted graph out of the data by setting each thread
as a node and each interaction as an edge. For the
ease of data abstraction, we created an adjacency ma-
trix in the script. Using the analysis module, we store
the attributes in the matrix. Now the data is ready
for more advanced analysis.

3.3 Enhanced filtering and view updating

After the data is extracted and stored, we employ the
Louvain algorithm [3] to perform a first phase of com-
munity detection. The initial large community is par-
titioned into smaller but more related communities.
Within each small community, threads interact more
often between each other.

Then, we employ the PageRank algorithm[1] to
identify the most active thread(s) within each com-
munity. Using the adjacency matrix we created, we
calculated the outdegree and indegree of each thread
and apply Equation 1. We modify the algorithm to
make it iterate once due to the small scale of the par-
titioned communities. In the script, the PageRank

2

Table 2: The metrics of the graph structure

Metric Description Value

|V | Number of threads 509
|E| Number of interactions 6015
W Total weight of edges 58505

values PRt(p) are stored in the diagonal entries Vii
of M. Based on the values, we sorted the threads and
picked the ones with the largest value.

After that, we make use of the global filter function
in Trace Compass to update the view. The function
will prompt for limiting criteria such as thread ID or
running time and highlight anything that meets the
criteria. Different views are synced to provide better
correspondence. Figures 2 and 3 shows the initial and
updated view in Trace Compass.

Figure 2: Initial Views in Trace Compass

Figure 3: Highlighted Views in Trace Compass

4 Evaluation

The tracing was done using LTTng 2.10[2] on a
Ubuntu 18.04 system with a Quad-core CPU and
16 GB RAM. Our analysis shows that enabling each
event imposed 14 ns in the execution time of the pro-
gram. And the overall overhead is based on how many
times this event appears in the trace. In this use case,
our analysis shows a 5.3% slowdown in the execution
of the program under analysis. This is because the
sched switch event is a frequent event which occurs
213385 times over a time period of 26 seconds in this
use case.

The second part is to evaluate the trace analysis
part. Firstly, the network modelling is implemented
in the EASE script. We extracted 509 threads and
6015 distinct interactions with a total weight of 58505
as listed in Table 2. This is aligned with our assump-
tion before the implementation that the interactions
between threads would be repetitive and recurrent.
Then we fed the metrics to Gephi[4] for visualization.
The trace size in this use case is 316 MB and it took
1599 milliseconds to extract the metrics.

Then we performed the Louvain algorithm[3] on the
metrics. Figure 4(a) shows the result of the modular-

(a) Modularity Algorithm (b) PageRank Algorithm

Figure 4: Results from Gephi

ity test, an implementation of Louvain algorithm in
Gephi. The partitioning appears to be very clear and
unambiguous.

Lastly, we performed PageRank algorithm[1] using
Gephi’s PageRank test. Figure 4(b) shows the out-
come. We expected the outcome of the threads within
each community being ranked. The threads with the
greatest ranking values are the most significant ones
we want to highlight in Trace Compass view. From
this figure, we can see that the algorithm ranks the
threads efficiently.

5 Conclusion

The presented work was a successful application of
Social Network Analysis on system tracing data. The
results provide a more effective and efficient approach
to monitor and debug operating systems. In general,
the work validates the feasibility of applying commu-
nity analysis and PageRank algorithm on data-sets
other than social media data. Furthermore, the pre-
sented work enlightens the possibility of combined use
of existing techniques in various field. With the help
of emerging techniques such as Artificial Intelligence
and Machine Learning, more revolutionary applica-
tions can be brought to network analysis.

References

[1] W. Xing and A. Ghorbani. “Weighted PageRank
algorithm”. In: Proceedings. Second Annual Con-
ference on Communication Networks and Ser-
vices Research, 2004. May 2004, pp. 305–314.

[2] M. Desnoyers and M. R. Dagenais. “The LTTng
tracer: A Low Impact Performance and Behav-
ior Monitor for GNU/Linux”. In: OLS (Ottawa
Linux Symposium) 2006. 2006, pp. 209–224.

[3] V. D. Blondel et al. “Fast unfolding of commu-
nities in large networks”. In: Journal of Statisti-
cal Mechanics: Theory and Experiment 2008.10
(Oct. 2008), P10008.

[4] Gephi: The Open Graph Viz Platform. https:

//gephi.org/. Accessed: 2020-07-26.

[5] TraceCompass. https://projects.eclipse.

org/projects/tools.tracecompass. Accessed:
2020-07-26.

3

https://gephi.org/
https://gephi.org/
https://projects.eclipse.org/projects/tools.tracecompass
https://projects.eclipse.org/projects/tools.tracecompass

	Introduction
	Methodology
	Data collection and pre-processing
	Constructing thread interaction's graph
	Graph community analysis
	Ranking processes

	Use case
	Trace data collection
	Data processing using script
	Enhanced filtering and view updating

	Evaluation
	Conclusion

