
Graph-Based Performance Analysis at System- and Application-Level

Richard Müller
rmueller@wifa.uni-leipzig.de

Leipzig University, Leipzig, Germany

Tom Strempel
ts66cyqo@studserv.uni-leipzig.de

Leipzig University, Leipzig, Germany

Abstract

The Kieker plugin for jQAssistant transforms mon-
itored log data into graphs to support software en-
gineers with performance analysis. In this paper, we
describe how we have extended and improved this plu-
gin to support performance analysis at system- and
application-level and how we have evaluated its cor-
rectness and scalability using data from recent exper-
iments. This is a first step to replicate complete ex-
periments in the field of performance analysis using
graphs.

1 Introduction

Graphs can be used to store and integrate data from
different software artifacts [1]. The graph data sup-
port software engineers to make informed decisions.
To create this graph-based data source we use the
jQAssistant1 framework and Neo4j2.

We have developed a jQAssistant plugin that scans
Kieker log data and stores them in a Neo4j graph
database [3]. However, the initial version of the plu-
gin had some issues. First, it was not possible to scan
system-level information, such as CPU and system
memory utilization. Second, the graph schema con-
tained some redundant information leading to high
storage space requirements. Third, there were some
implementation flaws leading to long scan times. Fi-
nally, the plugin was only evaluated with regard to
feasibility but not to scalability.

Hence, the contributions of this paper are as fol-
lows. We extend and improve the Kieker plugin to
solve the aforementioned issues and evaluate its cor-
rectness and scalability using data from recent exper-
iments. We also provide a reproduction package to
replicate our results.

2 Related Work

The Kieker framework provides monitoring, analysis,
and visualization support for application and system
performance analysis as well as reverse engineering [4].
It has been used in several research projects and has
a steadily growing open source community.

There are two recent experiments using Kieker log
data for empirical analysis. Pitakrat et al. [2] com-

1 https://jqassistant.org/
2 https://neo4j.com/

bine component failure predictors with architectural
knowledge to improve failure prediction. They use
Kieker log data monitored at application- and system-
level, such as method calls, CPU, and system memory
utilization. Schnoor and Hasselbring [5] investigate
the correlation between weighted dynamic and static
coupling metrics. They want to find out how weighted
dynamic coupling measurements can support software
engineers to evaluate the architectural quality of soft-
ware systems. Therefore, they use Kieker log data
from monitoring production use of a commercial soft-
ware system over a period of four weeks.

We have shown that graphs are suitable to store
Kieker log data and form a sound basis for further
analysis and visualization [3]. In this paper, we extend
and improve this work and evaluate it using data from
the aforementioned experiments.

3 Kieker Plugin

Next, we will show how the Kieker plugin3 has been
extended and improved to support performance anal-
ysis at system- and application-level. The changes
are summarized in the Kieker graph schema shown in
Figure 1.

3.1 Extensions

The Kieker plugin has been extended to sup-
port system-level measurements including CPUUti-
lization, DiskUsage, LoadAverage, MemSwapUsage,
and NetworkUtilization with their corresponding
properties. We have chosen the common node type
Measurement instead of Record for these nodes to
avoid confusion with the existing node Record which
contains both, methods and measurements.

Furthermore, we have added two concepts to gener-
ate the weighted dynamic dependency graph at pack-
age level. The first concept creates the CONTAINS re-
lationship between Package and Type nodes. The sec-
ond concept creates the DEPENDS_ON relationship be-
tween Package nodes based on the dependency graph
at class level, where the dependency originally refers
to method calls.

Now, it is possible to scan and store system mea-
surements and to automatically create the weighted
dynamic dependency graph at package level.

3 https://github.com/softvis-research/

jqa-kieker-plugin

https://jqassistant.org/
https://neo4j.com/
https://github.com/softvis-research/jqa-kieker-plugin
https://github.com/softvis-research/jqa-kieker-plugin


TypeMethodRecord Package

CPUUtilization:
Measurement

DiskUsage:
Measurement

LoadAverage:
Measurement

MemSwapUsage:
Measurement

NetworkUtilization:
Measurement

CALLS DEPENDS_ON DEPENDS_ON

CONTAINS

CONTAINS

DECLARES CONTAINS

Figure 1: The extended (green) and improved (yellow) Kieker graph schema

3.2 Improvements

In the initial version of the Kieker graph schema each
call between two methods was mapped to a unique
CALLS relationship [3]. Now, there is one relationship
between two calling methods and the number of calls
is stored in the property weight of the CALLS rela-
tionship. Additionally, the properties incomingCalls

and outgoingCalls of a Method node were removed
as they can be derived from the call graph through
counting incoming and outgoing CALLS relationships
of a Method node.

The Event nodes of type Execution and Call acted
as helper nodes to calculate the Method property
duration and the CALLS relationship between meth-
ods. Both events could be removed as they are now
calculated and created during the scan. Moreover, the
Trace node was removed as it does not store any rele-
vant information for the analyses. Hence, the Record

node has a direct relationship CONTAINS to a Method

node.
These changes lead to a significant reduction of

the graph’s storage space requirement, to time sav-
ings during the scan, and simultaneously to increased
scalability. The graph schema can be adapted with
manageable effort if further data from the monitoring
log is required.

4 Evaluation

We evaluate the new functionality and the scalability
of the Kieker plugin by scanning Kieker log data from
two experiments to reproduce charts and values. Both
analyses can be replicated online with our reproduc-
tion package4.

4.1 Performance Analysis at System-
Level

Pitakrat et al. [2] published their monitoring data in
the online version of their article5. We use these data
for our first evaluation to show that the Kieker plu-

4 https://github.com/softvis-research/SSP2020
5 https://ars.els-cdn.com/content/image/1-s2.

0-S0164121217300390-mmc1.zip

gin scans system-level measurements correctly. There-
fore, we reproduce two line charts showing the system-
level measures CPU and system memory utilization of
the second business-tier instance (BT2) from [2].

After scanning the monitoring data, we get the
CPU utilization measurements of BT2 by executing
the Cypher query in Listing 1.

Listing 1: Cypher query for all CPU measurements of
BT2

MATCH (r:Record)-[:CONTAINS]->(c:CpuUtilization)

WHERE r.fileName =~ ’.*/1-MemoryLeak-5/kieker-logs/

kieker-20150820-064855519-UTC-middletier2-KIEKER’

RETURN c.timestamp AS timestamp, c.cpuID AS cpuID,

c.totalUtilization * 100 AS cpuUtilization

ORDER BY timestamp

Next, the data are filtered, transformed, and
cleaned. The complete analysis and the Cypher query
for system memory utilization can be found in our re-
production package. Finally, we have reproduced the
line charts for CPU and system memory utilization
of BT2 shown in Figure 2. The charts slightly differ
from the originals as we do not know all data transfor-
mations. Nevertheless, the courses of the line charts
correspond to the originals.

4.2 Performance Analysis at Application-
Level

Schnoor and Hasselbring [5] published the monitor-
ing data that they used for their analysis on Zenodo.
We use the fourth dataset6 from September 2018 for
our second evaluation of the scalability as this is the
biggest one with 58 users and 2,409,688,701 method
calls.

We have measured the time for scanning the mon-
itoring data on a HP EliteBook 850 G4 (Intel Core
i7-7600U CPU @ 2.8 GHz (4 CPUs), 16 GB RAM)
with Windows 10 as operating system and a Java de-
velopment toolkit in version 8. It takes 1 h 38 min 29 s
to scan all monitoring data including the creation of
the dynamic dependency graphs at class and package
level.

6 https://doi.org/10.5281/zenodo.3648269

2

https://github.com/softvis-research/SSP2020
https://ars.els-cdn.com/content/image/1-s2.0-S0164121217300390-mmc1.zip
https://ars.els-cdn.com/content/image/1-s2.0-S0164121217300390-mmc1.zip
https://doi.org/10.5281/zenodo.3648269


4:05 PM
0.0

100.0
CPU utilization (%)

(a) CPU utilization

3:55 PM
0.0

100.0
Memory utilization (%)

(b) System memory utilization

Figure 2: Reproduced line charts of system-level measurements of BT2 from [2]

The original dataset is in a packed binary format
and occupies 8.89 GB disk space. The graph database
needs 110 MB disk space. This reduction is mainly
due to omitting the node types Event and Trace in-
cluding their properties.

To show that the Kieker plugin can handle such a
large amount of data, we have executed the Cypher
query in Listing 2 and received the expected result of
2,409,688,701 method calls.

Listing 2: Cypher query to get the total number of
method calls of dataset 4 from [5]

MATCH (:Method:Kieker)-[calls:CALLS]->(:Method:Kieker)

RETURN SUM(calls.weight) AS methodCalls

After the scan, the Kieker plugin automatically cre-
ates the weighted dynamic dependency graphs at class
and package level using concepts. To examine the
correctness of these graphs, we compare the average
export coupling degrees of both graphs with the cor-
responding values from the experiment [5]. We have
executed the Cypher query in Listing 3 and received
the expected result of 370,821 as average export cou-
pling degree at class level. The Cypher query for the
average export coupling degree at package level also
returned the correct value of 1,868,664. The complete
analysis can be found in the reproduction package.

Listing 3: Cypher query to calculate the average ex-
port coupling degree at class level of dataset 4 from [5]

MATCH (t:Type:Kieker)

WHERE (t)-[:DEPENDS_ON]->() OR ()-[:DEPENDS_ON]->(t)

WITH t

OPTIONAL MATCH (t)-[out:DEPENDS_ON]->()

WITH t, SUM(out.weight) AS import

OPTIONAL MATCH ()-[in:DEPENDS_ON]->(t)

WITH t, import, SUM(in.weight) AS export

RETURN ROUND(AVG(export)) AS averageExport

5 Conclusion and Future Work

We have presented extensions and improvements of
the Kieker plugin to support performance analysis

at system- and application-level using graphs. The
modified plugin has been evaluated using Kieker log
data from two experiments. First, we could repro-
duce charts from a comprehensive system performance
analysis. Second, we could show that the plugin is
able to process 2,409,688,701 method calls and to re-
produce weighted dynamic dependency graphs at class
and package level used in an application performance
analysis. Both analyses can be reproduced with the
provided reproduction package.

In the future, we plan to replicate the complete ex-
periment comparing static and dynamic metrics [5].
We will use the Kieker plugin to generate dynamic de-
pendency graphs and the Java bytecode scanner plu-
gin7 to generate static dependency graphs.

References

[1] R. Müller et al. “Towards an Open Source Stack
to Create a Unified Data Source for Software
Analysis and Visualization”. In: Proceedings of
the 6th IEEE Working Conference on Software
Visualization. Madrid, Spain: IEEE, 2018.

[2] T. Pitakrat et al. “Hora: Architecture-aware on-
line failure prediction”. In: Journal of Systems
and Software 137 (2018), pp. 669–685.

[3] R. Müller and M. Fischer. “Graph-Based Anal-
ysis and Visualization of Software Traces”.
In: 10th Symposium on Software Performance:
Joint Developer and Community Meeting of
Descartes/Kieker/Palladio. Würzburg, Ger-
many, 2019.

[4] W. Hasselbring and A. van Hoorn. “Kieker: A
monitoring framework for software engineering
research”. In: Software Impacts 5 (Aug. 2020),
pp. 1–5.

[5] H. Schnoor and W. Hasselbring. “Comparing
Static and Dynamic Weighted Software Coupling
Metrics”. In: Computers 9.2 (Mar. 2020), p. 24.

7 https://github.com/jQAssistant/jqa-java-plugin

3

https://github.com/jQAssistant/jqa-java-plugin

	Introduction
	Related Work
	Kieker Plugin
	Extensions
	Improvements

	Evaluation
	Performance Analysis at System-Level
	Performance Analysis at Application-Level

	Conclusion and Future Work

