
[Extended Abstract] SQuAT-Vis: Visualization and Interaction in

Software Architecture Optimization

Sebastian Frank
sebastian.frank@iste.uni-stuttgart.de

University of Stuttgart, Germany

André van Hoorn
van.hoorn@informatik.uni-stuttgart.de

University of Stuttgart, Germany

Motivation

Optimization of software architectures is a complex
task that can not be fully automated. For this rea-
son, software architecture optimization approaches,
like SQuAT [4], often require human architects to par-
ticipate in the optimization process, e.g., by selecting
architectural candidates.

Related Work

Nevertheless, most of these approaches fail to sup-
port architects in solving their tasks as they provide
no or insufficient visualization and interaction tech-
niques. Regarding architectural information, archi-
tects can use graphical modeling editors, but they are
not designed to compare multiple architectures. Re-
garding goal satisfaction, architects can use generic vi-
sualization tools for multivariate data, like the Trade
Space Visualizer [1]. However, this requires architects
to have visualization skills and invest time and ef-
fort, making interactive software architecture practi-
cally infeasible.

Idea

For this reason, we developed SQuAT-Vis - a tool that
can visualize both architectural and goal satisfaction
data and is equipped with interaction techniques. De-
spite our focus on compatibility with the technologies
of SQuAT [4], SQuAT-Vis is conceptually compati-
ble with other software architecture optimization ap-
proaches. The (current) limitations are rather techni-
cal ones, as only instances of the Palladio Component
Model (PCM) [2] can be imported and the communi-
cation is Java-based.

Use Cases

We designed SQuAT-Vis with four typical use cases
for software architects in mind. Firstly, selecting a
single candidate or a subset of candidates from a pop-
ulation of architectural candidates. Secondly, the de-
cision of whether to accept the proposed (intermedi-
ate) solutions or to continue. Thirdly, identify which
architectural changes are necessary to implement a
particular candidate. Finally, exploring and explain-
ing the solutions to gain new insights and approve the

proposed changes’ usefulness. It has to be noted that
these use cases are sometimes part of the optimiza-
tion strategy itself, e.g., evolutionary optimization is
iterative by definition and requires stopping criteria,
but in other cases, they are implicitly left to the ar-
chitect, e.g., she could restart a non-iterative process
by providing the previous results as inputs. We based
our selection of use cases on the general optimization
process in the domain described by Aleti et al. [3],
which consists of three recurrent phases: generation
of new architectural candidates, evaluation of the can-
didates, and checking the satisfaction of the stopping
criteria.

Visualization & Interaction

SQuAT-Vis follows the principle of connected views
to achieve its goals. Despite administrative views,
three views consisting of multiple visualizations are
available. The Population View utilizes a scatter plot
matrix to give an overview of the whole population.
The Candidates View is designed for the comparison
of a small number of candidates using radar charts.
The Architecture View uses node-link diagrams and
parallel coordinate plots to display architectural in-
formation regarding component usage, component de-
pendencies, allocation, and resources. Candidates are
automatically tagged and visually highlighted if they
are Pareto-optimal, suggested by the software archi-
tecture optimization approach, or initial candidates.
A toolbar allows the architect to group, control, and
highlight candidates throughout all views.

Prototype

The front-end of SQuAT-Vis uses the JavaScript li-
brary D3.js [8] to display the data in the user’s
browser. The back-end is implemented using the Java
Enterprise Edition. This design allows the architect to
run SQuAT-Vis either as a local or remote server. The
communication is based on the Java Sockets API, and
a Java library is provided to support the implemen-
tation of client-side communication. Thus, assuring a
loose coupling between SQuAT-Vis and the client-side
software architecture optimization approach.



Evaluation

We conducted an expert user study to evaluate the
usefulness of SQuAT-Vis qualitatively. Two experts
and one non-expert in the field had to solve four tasks
based on the previously described use cases. We pro-
vided two datasets based on the Extended Simple
Tactics (ST+), and the Common Component Mod-
eling Example (CoCoME). The results indicate that
SQuAT-Vis provides sufficient support for selecting
candidates and deciding on the optimization process’s
termination. Therefore, we see SQuAT-Vis as an im-
portant contribution to (interactive) software archi-
tecture optimization.

Pointers & Talk

SQuAT-Vis has been developed as part of a Master’s
Thesis [5]. A tool demonstration paper [6] (including
a video [7]) will be presented at ECSA 2020. In this
talk, we will give an overview of the mentioned con-
cepts, methodology, and evaluation, as well as a short
demonstration of the tool.

References

[1] G. Stump et al. “The ARL trade space visualizer:
An engineering decision-making tool”. In: MA&O.
AIAA, 2004, p. 4568
[2] S. Becker, H. Koziolek, and R. Reussner. “The Pal-
ladio component model for model-driven performance
prediction”. In: JSS 82.1 (2009), pp. 3–22
[3] A. Aleti et al. “Software architecture optimization
methods: A systematic literature review”. In: TSE
39.5 (2013), pp. 658–683.
[4] A. Rago et al. “Distributed quality-attribute op-
timization of software architectures”. In: SBCARS.
ACM. 2017, p. 7.
[5] S. Frank. “Techniques for Visualization and Inter-
action in Software Architecture Optimization”. MA
Thesis. University of Stuttgart, 2019.
[6] S. Frank and A. van Hoorn. “SQuAT-Vis: Vi-
sualization and Interaction in Software Architecture
Optimization”. In: ECSA. 2020.
[7] Frank, S.: SQuAT-Vis Showcase Video,
https://youtu.be/YUGujyR0jA8
[8] M. Bostock.D3.js.

2


