
Investigating High Memory Churn via Object Lifetime Analysis to

Improve Software Performance

Markus Weninger? , Elias Gander⊗ , Hanspeter Mössenböck?

{firstname.lastname@jku.at}
? Institute for System Software, Johannes Kepler University, Linz, Austria

⊗ Christian Doppler Laboratory MEVSS, Johannes Kepler University, Linz, Austria

Abstract

High memory churn occurs when many temporary ob-
jects are created and shortly thereafter collected by
the garbage collector. Such excessive dynamic alloca-
tions negatively impact an application’s performance
because (1) a great number of objects has to be al-
located on the heap and (2) an increased number of
garbage collections is required to collect them.

In this paper, we present ongoing research on how
to support developers in detecting, understanding and
resolving high memory churn in order to improve
their application’s performance. Based on a recorded
memory trace, an algorithm automatically searches
for memory churn hotspots and calculates the age
at which objects die within it, since objects that die
young are the major contributors to memory churn.
Information about these objects, for example their
types and allocation sites, can then be inspected in
order to locate the problematic code locations.

To demonstrate the feasibility and applicability
of our approach, we implemented and present a
new memory churn analysis feature in AntTracks,
our trace-based memory monitoring tool.

1 Introduction

A common performance anti-pattern [1] is high mem-
ory churn. High memory churn, also known as ex-
cessive dynamic allocations [6], denotes the frequent
creation and collection of objects. The time it takes
to allocate these objects, as well as the time spent on
collecting them during garbage collection, both neg-
atively impact an application’s performance. Even
though temporary objects often turn out to be super-
fluous and avoidable through minor adjustments of
the underlying algorithms, most state-of-the-art mem-
ory monitoring tools do not provide analysis features
to inspect memory churn in greater detail but rather
focus on the analysis of memory leaks.

In this paper, we describe an approach to support
developers during the investigation of high memory
churn in garbage-collected languages. To motivate
our work, we present typical causes for high mem-
ory churn in Section 2. In Section 3, we discuss how
our approach automatically detects memory churn
hotspots, i.e., time windows in which unusual amounts

of garbage is collected, based on the evolution of an
application’s memory footprint. If a memory churn
hotspot is detected, we calculate the lifetime of each
object that died within the hotspot, as explained in
Section 4. We perform this calculation since objects
that die shortly after their creation are the main con-
tributors to high memory churn. In Section 5, we dis-
cuss how lifetime information can be combined with
information on other heap object properties (such as
type or allocation site) to point users to code locations
that should be inspected to reduce memory churn.

All concepts presented in this work have been
implemented using our memory monitoring tool
AntTracks 1. AntTracks encompasses two parts: (1) a
modified Java VM that collects memory traces con-
taining information about memory events such as al-
locations or garbage collections [5], and (2) an offline
analysis tool that can reconstruct the monitored ap-
plication’s heap states, i.e., the contents of the heap
at different points in time, based on such a trace [7].

2 Motivation

The careless allocation of objects can lead to high
memory churn that results in run-time overhead
that could easily be prevented. A typical situa-
tion leading to high memory churn is the allocation
of short-living temporary objects within heavily ex-
ecuted loops. Every iteration allocates new objects
that quickly turn into garbage. Another typical prob-
lem is the use of boxed primitives as generic types,
e.g., ArrayList<Integer>. Every time a primitive is
added to such a structure, it is wrapped into a heap
object, which causes unnecessary memory overhead.
One last example is the careless use of streams. Often,
multiple map operations (or similar) are used unneces-
sarily, causing many short-living intermediate objects
to be created. Another classic mistake is to use map

when working with primitives instead of using the re-
spective memory-efficient operation such as mapToInt.

3 Memory Churn Hotspot Detection

The first step when checking an application for high
memory churn is to look for memory churn hotspots.
Figure 1 shows an application that exhibits frequent

1AntTracks available at: http://mevss.jku.at/AntTracks

http://mevss.jku.at/AntTracks


tall spikes in its memory footprint, a typical memory
churn pattern. The plot depicts the monitored ap-
plication’s memory footprint at the beginning and at
the end of every garbage collection. Since the memory
occupied at the start of a garbage collection is much
higher than at its end, each garbage collection appears
as the falling edge of a spike.

In [9], we presented algorithms to automatically
detect suspicious patterns in an application’s mem-
ory footprint that hint at memory anomalies such as
high memory churn. This feature aims to help novice
users that would otherwise struggle to recognize prob-
lematic patterns on their own. Currently, we only
present the most critical anomalies, e.g., the strongest
memory churn hotspot, to not overwhelm the (novice)
users with too much information. In general, the fol-
lowing steps are performed to find an application’s
strongest memory churn hotspot (as done in Figure 1):

• Construct all possible time windows that cover
between 5 and 50 garbage collections.

• Calculate each window’s garbage per second by
summing the bytes collected within the win-
dow and dividing them by the window’s dura-
tion. Graphically speaking, sum the heights of
all falling edges within the window and divide
them by the window’s width.

• Finally, select the window with the highest
garbage per second. If its garbage per second
is significantly higher than the application’s av-
erage garbage per second, i.e., if it is a hotspot,
report it (e.g., by highlighting in the plot).

Figure 1: Automatically detected time window with
high memory churn (global view and zoomed-in view).

4 Object Lifetime Calculation

To detect which objects die young, we need to know
the time at which a given object was born and when
it died. The Merlin algorithm [2] used by Elephant
Tracks [3] could be used to calculate very exact object
death times, yet it causes a several 100-fold increase
in the analyzed application’s run time [4]. Instead,
we use less exact object ages, namely the number of
garbage collections an object survived. This way, it is

sufficient to know for each object (1) the first garbage
collection following its allocation and (2) during which
garbage collection it was collected. Like most memory
tracers, AntTracks records events at the start and the
end of garbage collections, where garbage collections
are assigned consecutive IDs. As shown in Figure 2,
the birth time of each object is set to the ID of the
garbage collection following the allocation. When the
garbage collector reclaims an object, it is assigned the
ID of the currently running garbage collection as its
free time. It is then straightforward to calculate the
age of a died object by subtracting the two IDs.

... Allocation event A
0
1

0
0 0 - -

0 1 2
B C D E

Birth time:
Free time:... Free event

0 1 2

t
A B B C AC DGC 

Start
GC
End

GC 
Start

GC 
Start

GC
End

GC
EndE

Figure 2: For every heap object, a Birth Time and
Free Time is reconstructed.

5 Memory Churn Suspect Inspection

Many memory analysis tools, including AntTracks,
group heap objects based on one or more criteria (such
as their types) and display the number of objects and
the number of bytes per heap object group [7]. This
typically happens during heap state analysis, i.e., dur-
ing the inspection of the heap at a given point in time.

We suggest a similar approach for memory churn
analysis. Yet, instead of grouping the live objects at
a given point in time, we group all objects that died
within a given time window. This time window can
be manually selected by the user or automatically
detected, as explained in Section 3. We use a new
grouping criterion, the object lifetime grouping, in ad-
dition to existing ones such as type and allocation site.
As shown in Figure 3, this criterion aggregates the
died objects into groups named “<x> GCs survived”.
Next to each group we display the number of objects
and the number of bytes that have been collected by
the garbage collector within the selected time window.
Major memory churn contributors can be revealed by
drilling down into the largest object groups that did
not survive a single garbage collection.

6 Example

Figure 3 through Figure 5 show a complete example
of how AntTracks has been used to investigate a mem-
ory churn hotspot in order to improve the finagle-http
benchmark in the Renaissance benchmark suite [8]
version 0.9.0. As shown in Figure 3, inspecting the
automatically detected memory churn hotspot reveals
that over 99.9% of the died objects (10, 012, 077 out
of 10, 019, 784) did not even survive a single garbage
collection. Inspecting the types of these objects in
Figure 4 reveals that most of them are divided al-
most equally among four types (since finagle-http is a

2



Scala application, its type names are typically longer
than Java type names). Next, we inspected the al-
location sites of these four types and found out that
the allocation sites of the first three types are within
library methods which we cannot modify. Yet, Fig-
ure 5 shows that the allocation site of the fourth type
(which are anonymous function objects) is located in
the FinagleHttp class, the benchmark’s main class.
Since such a rapid allocation and collection of anony-
mous function objects is unlikely to be intentional, we
inspected the method’s source code. In a loop, a lot
of anonymous function objects were created waiting
for an HTTP request to succeed before incrementing
a counter. In our fixed version, only a single response
handler is created which is reused for every HTTP re-
quest. This reduced the overall amount of allocated
temporary objects by about 25% and sped up the ap-
plication by about 5%.

Figure 3: Grouping objects by the number of survived
GCs facilitates high memory churn analysis.

Figure 4: Inspecting the types of the frequently dying
objects reveals major suspect types.

Figure 5: The allocation sites of frequently dying ob-
jects lead to methods that have to be inspected.

7 Conclusion and Future Work

As high memory churn can have a substantial negative
impact on an application’s performance, tool support
to inspect such memory anomalies is essential. In this
work, we discussed common causes for memory churn,
we showed how to automatically detect memory churn
hotspots, we presented how to detect objects that die
shortly after their allocation, and suggested a way how
to utilize and visualize this information for memory
churn analysis. To showcase the applicability of our
approach, we implemented it in our memory monitor-
ing tool AntTracks and presented an example on how
the tool’s new memory churn analysis feature has been
used to improve a real-world benchmark application.

For future work, we currently focus on making
AntTracks (including its new memory churn analy-
sis) more accessible to novice users. As we evaluated
AntTracks’s various capabilities [10], we observed a
need for more guidance during memory anomaly anal-
ysis tasks. This lead us to elaborate recommendations
for memory monitoring tool developers including ‘Use
automation to relieve users from complex tasks’ as
well as ‘Provide guidance and explanations to support
exploratory learning of analysis capabilities’.

8 Acknowledgement

The financial support by the Austrian Federal Min-
istry for Digital and Economic Affairs, the National
Foundation for Research, Technology and Develop-
ment, and Dynatrace is gratefully acknowledged.

References

[1] C. U. Smith and L. G. Williams. “Software
Performance Antipatterns”. In: WOSP. 2000,
pp. 127–136.

[2] M. Hertz et al. “Generating Object Lifetime
Traces with Merlin”. In: ACM Trans. Program.
Lang. Syst. 28.3 (May 2006), pp. 476–516.

[3] N. P. Ricci, S. Z. Guyer, and J. E. B. Moss.
“Elephant Tracks: Portable Production of Com-
plete and Precise GC Traces”. In: ISMM. 2013,
pp. 109–118.

[4] G. Xu. “Resurrector: A Tunable Object Lifetime
Profiling Technique for Optimizing Real-world
Programs”. In: OOPSLA. 2013, pp. 111–130.

[5] P. Lengauer, V. Bitto, and H. Mössenböck. “Ac-
curate and Efficient Object Tracing for Java Ap-
plications”. In: ICPE. 2015, pp. 51–62.

[6] M. Peiris and J. H. Hill. “Automatically Detect-
ing ”Excessive Dynamic Memory Allocations”
Software Performance Anti-Pattern”. In: ICPE.
2016, pp. 237–248.

[7] M. Weninger and H. Mössenböck. “User-defined
Classification and Multi-level Grouping of Ob-
jects in Memory Monitoring”. In: ICPE. 2018,
pp. 115–126.

[8] A. Prokopec et al. “Renaissance: Benchmarking
Suite for Parallel Applications on the JVM”. In:
PLDI. 2019, pp. 31–47.

[9] M. Weninger, E. Gander, and H. Mössenböck.
“Detection of Suspicious Time Windows In
Memory Monitoring”. In: MPLR. 2019, pp. 95–
104.

[10] M. Weninger et al. “Evaluating an Interactive
Memory Analysis Tool: Findings from a Cogni-
tive Walkthrough and a User Study”. In: Proc.
ACM Hum.-Comput. Interact. 4.EICS (June
2020), 75:1–75:37.

3


	Introduction
	Motivation
	Memory Churn Hotspot Detection
	Object Lifetime Calculation
	Memory Churn Suspect Inspection
	Example
	Conclusion and Future Work
	Acknowledgement

