Supporting Backward Transitions within Markov Chains when

Modeling Complex User Behavior in the Palladio Component Model

Maximilian Barnert, Helmut Krcmar
{maximilian.barnert, helmut.krcmar }@Qtum.de
Technical University of Munich, 85748 Garching, Germany

Abstract

The specification of complex user behavior as accu-
rate as possible is required in order to evaluate per-
formance characteristics for application systems. Ap-
proaches exist to model probabilistic aspects within
user behavior for session-based application systems
using Markov chains. To integrate these approach into
performance prediction activities, the authors trans-
form the workload specifications of WESSBAS into
performance model instances of the Palladio Compo-
nent Model (PCM). In doing so, existing elements
of the meta-model are reused to represent Markov
chains. However, the simulation of these performance
models is limited to Markov chains without backward
transitions. To deal with this use case, this paper
presents our approach to enable backward transitions
within Markov chains using available elements of the
PCM meta-model. By extending the existing ap-
proach, further complexity within workload for appli-
cation systems is supported during performance mod-
eling.

1 Introduction

Performance evaluation activities require high accu-
racy when representing workload specifications [4].
This includes reproducing real user behavior ade-
quately to predict performance for application sys-
tems precisely. In order to reflect the user behavior
sufficiently in performance models, Végele et al. [1]
present an approach to transform workload specifica-
tions for session-based application systems into per-
formance model instances of the Palladio Component
Model (PCM). However, the simulation of these mod-
els is limited to workloads where service calls appear
only once within user sessions. Besides, Vogele et
al. [4] propose an alternative approach extending the
PCM meta-model to reflect complexity in user behav-
ior. As this requires changes to the meta-model, we
re-use the approach of Vogele et al. [1] in this pa-
per to enable simulating activity cycles within work-
loads by using available elements of PCM. In doing so,
the presented adaptions broaden the applicability of
the original approach by supporting further workload
characteristics. In addition, this prevents changing
the PCM meta-model.

The remainder of this paper is organized as follows:
Section 2 details the background of this work. The
addressed problem is stated in section 3. Afterwards,
section 4 presents our approach to solve this issue. In
section 5, we depict limitations of our approach. Sec-
tion 6 discusses related work. Finally, the conclusion
and future work are outlined in section 7.

2 Background

The approach described in this paper is based on pre-
vious works for specifying and extracting workload for
session-based application systems [2, 3]. The work-
load modeling formalism, called WESSBAS!, uses be-
havior models specified as Markov chains for provid-
ing a probabilistic representation of the user behav-
ior. To integrate probabilistic workload characteris-
tics into performance prediction activities, Vogele et
al. [1] transform workload specifications of WESSBAS
to performance model instances of PCM.? For simpli-
fication purposes, we exclude elements of the original
modeling approach in this paper. In particular, we do
not integrate (1) the concept of Guards and Actions
(GaAs) and (2) external operation calls for system
components, e.g, a HT'TP call. This allows to state
the problem in section 3 using a reduced model com-
plexity without touching the underlying concept for
representing behavior models in PCM.

For representing WESSBAS behavior models (i.e.,
Markov chains) in PCM, Vigele et al. [1] use the PCM
repository model as the PCM usage model does not
allow to reflect several incoming or outgoing edges.
In doing so, the authors integrate a basic compo-
nent with a corresponding interface. A component
operation as RDSEFF is attached for each Markov
state. A probabilistic branch within each operator’s
RDSEFF models the transitions between different
Markov states. Each branch contains a transition’s
think time modeled as InternalAction using a normal
distribution with mean and standard deviation. An
ExternalAction is added to reflect the transition to
another Markov state. In behavior models two artifi-
cial elements are used to tag the initial (/) and final

LAcronym for Workload Extraction and Specification for
Session-Based Application Systems
2https://github.com/Wessbas/wessbas.wessbas2pcm



Figure 1: Example of a behavior model specified as
Markov chain containing a backward transition

state ($) of the chain. Transitions to the final state $
are represented by a branch consisting of StartAction
and StopAction. The behavior model’s initial state I
is represented by the operation INITIAL of the ba-
sic component. It contains an FxternalAction linked
to the entry service of the model. The initial state is
called in the closed workload of the PCM usage model
to initiate the behavior model’s execution.

3 Problem Statement

The applicability of the above stated approach is lim-
ited to behavior models (i.e., Markov chains) not con-
taining backward transitions due to simulation con-
straints. An exemplary Markov chain incorporating a
backward transition is depicted in Figure 1. It con-
sists of two services A and B (e.g., HTTP calls). The
initial state I is linked to service A, which makes it
the behavior model’s entry point. Markov state A has
an outgoing transition to state B, which again points
backward to state A. This backward transition is used
with a probability of 99.9%. In addition, service B
goes to the final state $ with a probability of 0.1%.

Figure 2a shows the resulting repository model
transforming the Markov chain in figure 1 to PCM
using the approach of Vogele et al. [1]. The ba-
sic component behaviorModell reflects the behavior
model. The operations state_A und state_B are as-
signed to represent the two Markov states A and B.
The operation INITIAL points to the entry point of
the Markov chain calling the service A. The RDSEFF
of state_A contains an FEzternalAction, which calls
the component’s operator state_B. The RDSEFF of
state_B again calls operator state_A with a probabil-
ity of 99.9% (fig. 2b). The final state is entered with
a probability of 0.1%.

To simulate this instance, we created the necessary
models on PCM release 4.2. Afterwards, we handed
them over to PCM’s simulation framework SimuCom.
However, cycles caused by backward transitions (e.g.,
the edge from B to A) prevent simulating such models,
because running through a cycle necessitates attach-
ing measurements although the previous series of the
same context (i.e., state A) is not yet finished.

4 Modeling Backward Transitions

In order to simulate such PCM model instances, we
adapt the original approach of Vogele et al. [1]. This
work proposes two changes to support the simulation
of backward transitions to initial and non-initial states

o <<Interface>>
behaviorModel1

void INITIAL()
void state_A()
void state_B()

<<Requires>>
RequiredRole

<<Provides>>
ProvidedRole

a <<BasicComponent>>
behaviorModel1

SEFFCompartment
%7 behaviorModel 1.INITIAL
&]‘ behaviorModel1.state_A
&I behaviorModel1.state_B

(a) PCM Repository Model

hd

’:* <<Branch>>
behaviorModel.state_B

& << ProbabilisticBranchTransition> >
[©* > Transistion to final state

<. <<ProbabilisticBranchTransition> >
<"~ Transition to state_A

70999
J13

+ <<InternalAction>>
delay

% 0,001
.13

ResourceDemand

L5 Norm(9, 0.9) <DELAY>

v

+ , <<ExternalCallAction>>
ﬂ Transition_To_A

RequiredRole.state_A

°

o

®

(b) RDSEFF of operation state_B

Figure 2: Exemplary transformation to PCM

within Markov chains (fig. 3):

e Encapsulate outgoing transitions (i.e., FExter-
nalActions) with ForkedBehaviors

e Replace outgoing transitions to the entry service
using a link to the final state

ForkedBehaviors enable writing parallel measure-
ments when simulating performance models contain-
ing activity cycles within Markov chains. That is why
each ExternalAction reflecting a transition to another
state is encapsulated by a synchronous ForkAction.
We consider this modification acceptable as perfor-
mance data for transitions is typically not needed
for performance evaluation, which is mostly based
on system component calls within the nodes. Af-
ter adding ForkedBehaviors, we noticed infinite sim-
ulation runs with extensive resource consumption for
Markov chains with a low probability to attain the



®

& <<Branch>>

xR behaviorModel1.state_B

& << ProbabilisticBranchTransition>>

& <<ProbabilisticBranchTransition>>
X Transition to state_A

" Transition to final state

#0999 #0001

+ <<InternalAction>>
delay

ResourceDemand

L5 Norm(9, 0.9) <DELAY>

y

|1h <<ForkAction>>
ForkAction_Transition

u .
t' < <SynchronisationPoint>>

°

<<ExternalCallAction>>
é“ ExternalCallAction1
RequiredRole. ARTIFICIAL

0
®

®

Figure 3: Modified RDSEFF of operation state B

final state. As a workaround, each backward transi-
tion pointing to the entry service (e.g., the outgoing
transition from state B to A) is replaced by a link
to the final state. This modification is valid since the
closed workload in the usage model instantly re-enters
the initial state after leaving the former run and again
calls the behavior model’s entry point (i.e., state_A).
To preserve information about normal distribution of
think times, which is stored in the InternalAction of
a state’s RDSEFF, an artificial state $’ is introduced.
It is represented by the component’s operation ARTI-
FICIAL in the repository model. The operation’s RD-
SEFF contains the chain StartAction to StopAction in
order to reach the Markov chain’s final state. Back-
ward transitions to the entry service of the chain (i.e.,
state_A in our example) are replaced by a link to the
new artificial state $”. As a consequence, the Ezter-
nalAction is linked to the operation ARTIFICIAL in-
stead of state_A.

5 Limitations

Our approach is subject to limitations. First, a sin-
gle basic component is used to represent exactly one
behavior model in the repository model. In conse-
quence, the PCM usage model is linked to a single
behavior model. In contrast, WESSBAS allows to re-
flect several transactions within a workload using sep-
arated behavior models. However, setting clustering
to a value of one during the workload extraction pro-

cess makes it possible to use a single behavior model
to represent arbitrary workloads. Second, a distinct
transition is defined for the operator INITIAL, i.e.,
exactly one outgoing transition exists for the initial
state in the behavior model.

6 Related Work

Two approaches transform behavior models repre-
sented as Markov chains to performance models us-
ing PCM. As outlined in section 4, Vogele et al. [1]
describes an approach to transform workload speci-
fications into PCM model instances. However, the
simulation of these models is not possible for activity
cycles within user sessions. Furthermore, Vigele et al.
[4] propose extensions to the PCM usage model meta-
model to reflect complexity in user behavior. How-
ever, this approach requires changes to the default
meta-model of PCM.

7 Conclusion and Future Work

This work adapts the approach of Vogele et al. [1]
to simulate performance model instances representing
activity cycles within user sessions. Our adapted ap-
proach supports to simulate the performance for fur-
ther workload running on application systems. At the
same time, our extension requires minor changes to
the original approach and does not touch the default
meta-model of PCM.

For future work, we are going to incorporate the
extension presented in this paper to the workload ex-
traction procedure proposed by Vogele et al. [1]. In
doing so, we want to support workload containing ac-
tivity cycles within user sessions for this automatic
performance model creation approach.

References

[1] C. Vogele et al. “WESSBAS: extraction of prob-
abilistic workload specifications for load testing
and performance prediction—a model-driven ap-
proach for session-based application systems”.
In: Software and Systems Modeling 17.2 (2018),
pp. 443-477.

[2] A. van Hoorn et al. “Automatic extraction
of probabilistic workload specifications for load
testing session-based application systems”. In:
Porceedings of the 8th International Conference
on Performance FEvaluation Methodologies and
Tools (VALUETOOLS 201}).

[3] A. Van Hoorn, M. Rohr, and W. Hassel-
bring. “Generating probabilistic and intensity-
varying workload for web-based software sys-
tems”. In: SPEC International Performance
Evaluation Workshop. Springer, pp. 124-143.

[4] C. Vogele et al. “Modeling Complex User Be-
havior with the Palladio Component Model”. In:
Softwaretechnik-Trends 35(3).



	Introduction
	Background
	Problem Statement
	Modeling Backward Transitions
	Limitations
	Related Work
	Conclusion and Future Work

