Selecting Time Series Clustering Methods based on Run-Time Costs

Andreas Schörgenhumer

Paul Grünbacher Hanspeter Mössenböck

12.11.2020

• Raw-based clustering

Clustering

• Raw-based clustering

• Raw-based clustering

• Feature-based clustering

Clustering

• Raw-based clustering

• Feature-based clustering

Clustering

• Raw-based clustering

• Feature-based clustering

Benefits:

Inspect time series properties

Dimensionality reduction

Handle unequal time series lengths

Clustering

• Feature-based clustering

• **Method** = triplet of (model, features, variant)

• **Method** = triplet of (model, features, variant)

Model	Features	Variant
•••	•••	•••
k-means	raw	no post-processing
BIRCH	feature set A	clip [0, 1]
Agglomerative	feature set B	drop correlated
	•••	•••

• **Method** = triplet of (model, features, variant)

Model	Features	Variant
•••	•••	•••
k-means	raw	no post-processing
BIRCH	feature set A	clip [0, 1]
Agglomerative	feature set B	drop correlated
•••	•••	•••

• Which one has the best clustering quality?

Method = triplet of (model, features, variant)

Model	Features	Variant
•••	•••	•••
k-means	raw	no post-processing
BIRCH	feature set A	clip [0, 1]
Agglomerative	feature set B	drop correlated
•••	•••	•••

- Which one has the best clustering quality?
- What are the run-time costs?

Assessing Quality

- Any external evaluation metric
- Requirement: Labeled data

Assessing Quality

- Any external evaluation metric
- Requirement: Labeled data

• Idea: Use run-time complexities

- Idea: Use run-time complexities
- Problem: Identical estimates

```
def func1 (n=1000):
    x = []
                                     O(n)
    for i in range(n):
        x.append(i)
    return x
from numba import jit
@jit
                                     O(n)
def func2 (n=1000):
    x = []
    for i in range(n):
        x.append(i)
    return x
                                     O(n)
def func3(n=1000):
    return [i for i in range(n)]
```

return np.arange(n).tolist()

O(n)

import numpy as np

def func4(n=1000):

Idea: Use run-time complexities

Problem: Identical estimates may yield different run times

- Idea: Use run-time complexities
- Problem: Identical estimates may yield different run times

Measure **actual run time** *r* on a concrete machine

Measure **actual run time** *r* on a concrete machine

```
r_{\mathsf{Method}} =
```

Measure **actual run time** *r* on a concrete machine

Measure **actual run time** *r* on a concrete machine

Measure **actual run time** *r* on a concrete machine

Measure **actual run time** *r* on a concrete machine

• Given: Set of n time series of length t, sets of p features

• Robust: Measure multiple times \rightarrow set of measurements R

Measure **actual run time** *r* on a concrete machine

• Given: Set of n time series of length t, sets of p features

• Robust: Measure multiple times \rightarrow set of measurements R

$$r = \frac{1}{|Q|} \sum_{r' \in Q} r' \qquad Q = \{ r' \in R | r' \ge q_l(R) \land r' \le q_u(R) \}$$

Measure **actual run time** *r* on a concrete machine

• Given: Set of n time series of length t, sets of p features

• Robust: Measure multiple times \rightarrow set of measurements R

Time Series Characteristics (TSC)

Group	Subgroup	#Features
	Dispersion	3
Distributional	Dispersion (blockwise)	10
Distributional	Duplicates	5
	Distribution	16
	Dispersion	2
	Dispersion (blockwise)	10
Temporal	Similarity	17
	Frequency	17
	Linearity	44
	Entropy	13
Comployity	Complexity (miscellaneous)	5
Complexity	Flatness	15
	Peaks	8
Statistical Tests	-	2

Time Series Characteristics (TSC)

Group	Subgroup	#Features
	Dispersion	3
Distributional	Dispersion (blockwise)	10
	Duplicates	5
	Distribution	16
	Dispersion	2
Temporal	Dispersion (blockwise)	4 main groups
	Similarity	4 main groups 13 subgroups
	Frequency	13 subgroups
	Linearity	44
	Linearity Entropy	13
Complexity	<u> </u>	
Complexity	Entropy	13
Complexity	Entropy Complexity (miscellaneous)	13

Time Series Characteristics (TSC)

	Group	Subgroup	#Features
	Distributional	Dispersion	3
		Dispersion (blockwise)	10
	Distributional	Duplicates	5
		Distribution	16
		Dispersion	2
12 ch	aracteristics		10
43 CH	aracteristics		
1675			17
167 fe	atures with p	parameterization	17 17
167 fe	atures with _l	parameterization Linearity	. ,
167 fe	atures with p		17
167 fe		Linearity	17
167 fe	Complexity	Linearity Entropy	17 44 13
167 fe		Linearity Entropy Complexity (miscellaneous)	17 44 13 5
167 fe		Linearity Entropy Complexity (miscellaneous) Flatness	17 44 13 5 15

Evaluation

- Data: **UCR** time series classification archive
 - o 128 datasets
 - Various domains (synthetic, sensors, motion, image, ECG, etc.)

Evaluation

- Data: **UCR** time series classification archive
 - o 128 datasets
 - Various domains (synthetic, sensors, motion, image, ECG, etc.)
- External evaluation metric: **ARI** (adjusted Rand index)

Evaluation

- Data: **UCR** time series classification archive
 - 128 datasets
 - Various domains (synthetic, sensors, motion, image, ECG, etc.)
- External evaluation metric: **ARI** (adjusted Rand index)
- Run-time measurement: **30** runs, quantile range [**0.1**, **0.9**]

Evaluation: Methods

Models:

Models:

- k-means
- o BIRCH
- Agglomerative clustering (Ward's linkage + Euclidean distance)
- Agglomerative clustering (weighted average linkage + Euclidean dist.)
- Agglomerative clustering (weighted average linkage + cosine distance)

Models:

- k-means
- o BIRCH
- Agglomerative clustering (Ward's linkage + Euclidean distance)
- Agglomerative clustering (weighted average linkage + Euclidean dist.)
- Agglomerative clustering (weighted average linkage + cosine distance)

Features:

- 4 main groups + 13 subgroups + all TSC
- Raw time series data

Models:

- k-means
- o BIRCH
- Agglomerative clustering (Ward's linkage + Euclidean distance)
- Agglomerative clustering (weighted average linkage + Euclidean dist.)
- Agglomerative clustering (weighted average linkage + cosine distance)

Features:

- 4 main groups + 13 subgroups + all TSC
- Raw time series data

• Variants (for features):

- Dropping correlated features
- Clipping to [0, 1] + logarithm-based clipping + tangent-based clipping
- All combinations of dropping + clipping variants
- No post-processing

Models:

- Clipping to [0, 1] + logarithm-based clipping + tangent-based clipping
- All combinations of dropping + clipping variants
- No post-processing

Models:

5 models

- o k-means
- o BIRCH
- Agglomerative clustering (Ward's linkage + Euclidean distance)
- Agglomerative clustering (weighted average linkage + Euclidean dist.)
- Agglomerative clustering (weighted average linkage + cosine distance)
- Features:

18 feature sets | + | raw

- 4 main groups + 13 subgroups + all TSC
- Raw time series data
- Variants (for features):

8 variants

- Dropping correlated features
- Clipping to [0, 1] + logarithm-based clipping + tangent-based clipping
- All combinations of dropping + clipping variants
- No post-processing

Dataset: ElectricDevices

Type: Device Samples: 16637

Dataset: ElectricDevices

Type: Device **Samples:** 16637

Dataset: ElectricDevices

Type: Device Samples: 16637

Dataset: ElectricDevices

Type: Device Samples: 16637

Model	Features	Variant	ARI	Run time [s]
1	complexity		0.35	98.25
1	c_entropy	01_d	0.32	44.10
k	c_entropy	log_d	0.32	35.51
1	d_dispersion_b	log	0.32	15.30
1	d_dispersion_b	01	0.32	15.27
1	t_dispersion_b	01	0.31	14.49
k	t_dispersion_b	tan_d	0.31	6.55
k	t_dispersion_b	tan	0.31	6.53
k	d_dispersion_b	log	0.31	6.38
k	d_dispersion_b	01_d	0.31	6.38
k	d_dispersion_b	01	0.31	6.36
·		<u> </u>		· · · · · · · · · · · · · · · · · · ·

Dataset: Electric Devices

Type: Device **Samples:** 16637

Model	Features	Variant	ARI	Run time [s]
k	temporal	d	0.49	1.38
1	t_dispersion_b	log	0.46	0.14
1	c_flatness	01	0.44	0.13
1	c_flatness		0.44	0.13

Dataset:FaceFourType:ImageSamples:112Time in large

Model	Features	Variant	ARI	Run time [s]
k	t_similarity	01_d	0.52	4.02
b	t_linearity		0.49	0.61
lw	t_linearity	01	0.36	0.53

Dataset: ItalyPowerDemand

Type: Sensor Samples: 1096

Model	Features	Variant	ARI	Run time [s]
b	temporal	01_d	0.39	10.87
b	t_linearity	log	0.39	3.35
b	t_linearity	01	0.37	3.29

Dataset: FiftyWords

Type: Image

Samples: 905

Conclusion

- Clustering method selection based on actual run-time costs:
 - Models
 - Features
 - Variants

Conclusion

- Clustering method selection based on actual run-time costs:
 - Models
 - Features
 - Variants
- User can selected method via quality-cost trade-off

Conclusion

- Clustering method selection based on actual run-time costs:
 - Models
 - Features
 - Variants
- User can selected method via quality-cost trade-off
- Future work: Apply to other areas:
 - Classification
 - Forecasting
 - ...

Selecting Time Series Clustering Methods based on Run-Time Costs

Andreas Schörgenhumer

Paul Grünbacher Hanspeter Mössenböck

12.11.2020

TSC: Distributional

Subgroup	Characteristic	Description
	kurtosis	measure of tailedness
Dispersion	skewness	measure of asymmetry
2.54	shift	mean minus the median of those values that are smaller than the mean
Dispersion	lumpiness	variance of the variances of blocks
(blockwise)	stability	variance of the mean of blocks
	normalized_duplicates_max	number of duplicates that have the maximum value of the data
	normalized_duplicates_min	number of duplicates that have the minimum value of the data
Duplicates	percentage_of_reoccurring_datapoints	number of unique duplicates compared to the number of unique values
	percentage_of_reoccurring_values	number of duplicates compared to the length of the data
	percentage_of_unique_values	number of unique values compared to the length of the data
	quantile	threshold below which $x\%$ of the ordered values of the data are, giving a hint on the distribution
Distributio n	ratio_beyond_r_sigma	ratio of values that are more than a factor $r \cdot \sigma$ away from the mean
	ratio_large_standard_deviation	ratio between the standard deviation and the (max – min) range of the data (based on the "range rule of thumb")

TSC: Temporal

Subgroup	Characteristic	Description
Dispersion	mean_abs_change	average absolute difference of two consecutive values
Dispersion	mean_second_derivative_central	measure of the rate of the rate of change
Dispersion	level_shift	maximum difference in mean between consecutive blocks
(blockwise)	variance_change	maximum difference in variance between consecutive blocks
Cimailarity	hurst	measure of long-term memory of a time series, related to auto-correlation
Similarity	autocorrelation	correlation of a signal with a lagged version of itself
_	periodicity	power (intensity) of specified frequencies in the signal (based on the periodogram)
Frequency	agg_periodogram	results of user-defined aggregation functions (e.g., fivenum) calculated on the periodogram
	linear_trend_slope	measure of linearity: slope
	linear_trend_rvalue2	measure of linearity: r^2 (coefficient of determination)
	agg_linear_trend_slope	variance-aggregated slopes of blocks
Linearity	agg_linear_trend_rvalue2	mean-aggregated r^2 of blocks
	c3	measure of non-linearity (originally from the physics domain)
	time_reversal_asymmetry_statistic	asymmetry of the time series if reversed, which can be a measure of non- linearity

TSC: Complexity

Characteristic

Subgroup

	binned_entropy	fast entropy estimation based on equidistant bins
Entropy	kullback_leibler_score (KL score)	maximum difference of KL divergences between consecutive blocks, where the KL divergence is a measure of how two probability distributions differ
	<pre>index_of_kullback_leibler_score</pre>	relative location where the maximum KL score was found
	cid_ce	measure of complexity invariance
Complexity (misc.)	permutation_analysis	measure of complexity through permutation
	swinging_door_compression_rate	compression ratio of the signal under a given error tolerance ϵ
	normalized_crossing_points	number of times a time series crosses the mean line (based on fickleness)
	normalized_above_mean	number of values that are higher than the mean
	normalized_below_mean	number of values that are lower than the mean
Flatness	normalized_longest_strike_above_mean	relative length of the longest series of consecutive values above the mean
	normalized_longest_strike_below_mean	relative length of the longest series of consecutive values below the mean
	flat_spots	maximum run-length of values when divided into quantile-based bins
Peaks	normalized_number_peaks	number of peaks, where a peak of support <i>n</i> is defined as a value which is bigger than its <i>n</i> left and <i>n</i> right neighbors
	step_changes	number of times the time series significantly shifts its value range

Description

TSC: Statistical Tests

Subgroup	Characteristic	Description
	adf	augmented Dickey-Fuller (ADF) test for unit root presence
-	kpss	Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for stationarity