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Part 1:

The Theodolite Scalability Benchmarking Method



Theodolite’s Scalability Metric
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Theodolite’s Scalability Measurement Method
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lag increase over time?

lag = queued messages



Theodolite’s Scalability Measurement Method

load intensity

resources

13

sufficient resources for load?

lag increase over time?



Theodolite’s Scalability Measurement Method

load intensity

resources

14

sufficient resources for load?

lag increase over time?



Theodolite’s Scalability Measurement Method

load intensity

resources

15

sufficient resources for load?

lag increase over time?



Theodolite’s Scalability Measurement Method

load intensity

resources

16

sufficient resources for load?

lag increase over time?



Theodolite’s Scalability Measurement Method

load intensity

resources

17



Theodolite’s Scalability Measurement Method

load intensity

resources

18

∑



Theodolite’s Scalability Measurement Method

load intensity

resources

19

Identify minimal required 

resources per load intensity



Theodolite’s Scalability Measurement Method

load intensity

resources

20



21

H
en

n
in

g 
an

d
 H

as
se

lb
ri

n
g 

2
0

2
0



Part 2:

Scalability Benchmarking at Large Scale



Improve Time Efficiency!

load intensity

resources
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8 × 7 × 3 × 5 min = 14 h



Open Research Questions
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RQ1

RQ2

RQ3

How can the scalability metric be measured 
more efficiently?

For how long should the lag be monitored?

How many repetitions are required?
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Research Agenda
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RQ1

RQ2

RQ3

How can the scalability metric be measured more efficiently?

Use heuristics to execute less experiments.

For how long should the lag be monitored?

Identify duration for stable lag trend.

How many repetitions are required?

Quantify scattering among experiments.
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Conclusions

Metric & measurement method 

for scalability in event-driven 

microservices

Benchmarking stream processing frameworks 

& deployment options at large scale

Theodolite: cloud-native

benchmarking framework 
https://github.com/cau-se/theodolite

Improve time efficiency by reducing

• number of experiments

• duration of experiments

• number of repetitions
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Example: Commit Interval
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Theodolite’s Framework Architecture
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