
contract no. 01IS17084B

11th Symposium on Software Performance 2020

Sören Henning and Wilhelm Hasselbring

Toward Efficient Scalability Benchmarking

of Event-Driven Microservice Architectures

at Large Scale



Event-Driven Microservice Architectures

2

Messaging System

Microservice A

API Gateway

Microservice B Microservice C Microservice D

REST API REST API REST API REST API

Stream 
Processing 
Framework

Stream 
Processing 
Framework

Stream 
Processing 
Framework

Stream 
Processing 
Framework



Event-Driven Microservice Architectures

3

Microservice A

API Gateway

Microservice B Microservice C Microservice D

REST API REST API REST API REST API

Kafka
Streams

Spring
Cloud Stream



Microservice DMicroservice CMicroservice CMicroservice C
Microservice BMicroservice BMicroservice BMicroservice BMicroservice AMicroservice A

Event-Driven Microservice Architectures

4

Microservice A

API Gateway

Microservice B Microservice C Microservice D

REST API REST API REST API REST API

Kafka
Streams

Spring
Cloud Stream



Part 1:

The Theodolite Scalability Benchmarking Method



Theodolite’s Scalability Metric

Scalability is the ability of the 
system to sustain increasing 
workloads by making use of 
additional resources […].

Herbst et al. 2013

6



Theodolite’s Scalability Metric

Scalability is the ability of the 
system to sustain increasing 
workloads by making use of 
additional resources […].

Herbst et al. 2013

Load Intensity to be increased

Service Level to be sustained

Resource Amounts to be added

Weber et al. 2014

7



Theodolite’s Scalability Metric

Scalability is the ability of the 
system to sustain increasing 
workloads by making use of 
additional resources […].

Herbst et al. 2013

Load Intensity to be increased

Service Level to be sustained

Resource Amounts to be added

Weber et al. 2014

load intensity

resource 
amounts

Herbst et al. 2015

demand(intensity)

8



Theodolite’s Scalability Metric

Scalability is the ability of the 
system to sustain increasing 
workloads by making use of 
additional resources […].

Herbst et al. 2013

Load Intensity to be increased

Service Level to be sustained

Resource Amounts to be added

Weber et al. 2014

load intensity

resource 
amounts

demand(intensity)

9



Theodolite’s Scalability Metric

Scalability is the ability of the 
system to sustain increasing 
workloads by making use of 
additional resources […].

Herbst et al. 2013

Load Intensity to be increased

Service Level to be sustained

Resource Amounts to be added

Weber et al. 2014

load intensity

resource 
amounts

demand(intensity)

10

containers



Theodolite’s Scalability Measurement Method

load intensity

resources

11



Theodolite’s Scalability Measurement Method

load intensity

resources

12

sufficient resources for load?

lag increase over time?

lag = queued messages



Theodolite’s Scalability Measurement Method

load intensity

resources

13

sufficient resources for load?

lag increase over time?



Theodolite’s Scalability Measurement Method

load intensity

resources

14

sufficient resources for load?

lag increase over time?



Theodolite’s Scalability Measurement Method

load intensity

resources

15

sufficient resources for load?

lag increase over time?



Theodolite’s Scalability Measurement Method

load intensity

resources

16

sufficient resources for load?

lag increase over time?



Theodolite’s Scalability Measurement Method

load intensity

resources

17



Theodolite’s Scalability Measurement Method

load intensity

resources

18

∑



Theodolite’s Scalability Measurement Method

load intensity

resources

19

Identify minimal required 

resources per load intensity



Theodolite’s Scalability Measurement Method

load intensity

resources

20



21

H
en

n
in

g 
an

d
 H

as
se

lb
ri

n
g 

2
0

2
0



Part 2:

Scalability Benchmarking at Large Scale



Improve Time Efficiency!

load intensity

resources

23

8 × 7 × 3 × 5 min = 14 h



Open Research Questions

24

RQ1

RQ2

RQ3

How can the scalability metric be measured 
more efficiently?

For how long should the lag be monitored?

How many repetitions are required?



Search Heuristics

load intensity

resources

25
load intensity

resources
load intensity

resources

load intensity

resources

RQ1
H1

H3H2



Research Agenda

26

RQ1

RQ2

RQ3

How can the scalability metric be measured more efficiently?

Use heuristics to execute less experiments.

For how long should the lag be monitored?

Identify duration for stable lag trend.

How many repetitions are required?

Quantify scattering among experiments.



27

Conclusions

Metric & measurement method 

for scalability in event-driven 

microservices

Benchmarking stream processing frameworks 

& deployment options at large scale

Theodolite: cloud-native

benchmarking framework 
https://github.com/cau-se/theodolite

Improve time efficiency by reducing

• number of experiments

• duration of experiments

• number of repetitions



References

28

[Herbst et al. 2013] N. Herbst, S. Kounev, and R. Reussner, “Elasticity in Cloud 

Computing: What it is, and What it is Not” in Proc. International 

Conference on Autonomic Computing, San Jose, 2013.

[Weber et al. 2014] A. Weber, N. Herbst, H. Groenda, and S. Kounev, “Towards a

Resource Elasticity Benchmark for Cloud Environments” in Proc. 

Int. Workshop on Hot Topics in Cloud Service Scalability, 2014.

[Herbst et al. 2015] N. Herbst, A. Weber, H. Groenda, S. Kounev. “BUNGEE: An 

Elasticity Benchmark for Self-Adaptive IaaS Cloud Environments” 

in Proc. IEEE/ACM International Symposium on Software 

Engineering for Adaptive and Self-Managing Systems, 2015.

[Henning and Hasselbring 2020] S. Henning and W. Hasselbring. “Theodolite: Scalability 

Benchmarking of Distributed Stream Processing Engines” in arXiv

preprints, arXiv: 2009.00304, 2020.





Event-Driven Microservice Architectures

30

Messaging System

Microservice A

API Gateway

Microservice B Microservice C Microservice D

REST API REST API REST API REST API

Stream 
Processing 
Framework

Stream 
Processing 
Framework

Stream 
Processing 
Framework

Stream 
Processing 
Framework



Example: Commit Interval

31

Hierarchical 

Aggregation

Aggregating

Time Attributes

Database 

Storage

Downsampling

Kafka
Streams



Theodolite’s Framework Architecture

32

Experiment Control

Dashboard
Offline

Analysis
Measurement

Data

Monitoring

Workload 
Generator

Messaging
System

Microservice (SUT)
Implementation of a Use Case

Stream Processing Engine

https://github.com/

cau-se/theodolite


