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KIEKER

 The Kieker framework provides

 monitoring,

 analysis,

 and visualization support

for 

 application and system performance analysis as well as

 reverse engineering
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[Hasselbring and van Hoorn 2020, http://kieker-monitoring.net/]

http://kieker-monitoring.net/
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KIEKER PLUGIN

 Transforms monitored log data into graphs

 Supports software engineers with performance analysis

and architecture discovery
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[Müller and Fischer 2019, https://github.com/softvis-research/jqa-kieker-plugin]

https://github.com/softvis-research/jqa-kieker-plugin
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KIEKER PLUGIN ISSUES

 No support for system-level information, such as CPU 

and system memory utilization

 High disk usage due to redundant information in the 

graph schema

 Long scan times due to implementation flaws

 No evaluation with regard to scalability
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CONTRIBUTIONS

 Kieker plugin was extended and improved to solve the

aforementioned issues

 Correctness and scalability of the revised plugin were 

evaluated by 

 processing data and

 reproducing analysis results

of two recent experiments

 A reproduction package is provided to replicate the

evaluation: https://github.com/softvis-research/SSP2020
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https://github.com/softvis-research/SSP2020
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OLD KIEKER GRAPH SCHEMA
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[Müller and Fischer 2019]
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REVISED KIEKER GRAPH SCHEMA

Extension

Improvement

No change
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1ST EXPERIMENT - HORA: ARCHITECTURE-AWARE 

ONLINE FAILURE PREDICTION

 Combine component failure predictors with architectural 

knowledge to improve failure prediction
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[Pitakrat et al. 2018]
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PERFORMANCE ANALYSIS AT SYSTEM-LEVEL

 Reproduce two line charts showing the system-level 

measures CPU and system memory utilization of the 

second business-tier instance from the first experiment 

[Pitakrat et al. 2018]
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CYPHER QUERY FOR CPU UTILIZATION
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2ND EXPERIMENT - COMPARING STATIC AND DYNAMIC 

WEIGHTED SOFTWARE COUPLING METRICS

 Investigate how weighted dynamic coupling 

measurements can support software engineers to 

evaluate the architectural quality of software systems
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[Schnoor and Hasselbring 2020]
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PERFORMANCE ANALYSIS AT APPLICATION-LEVEL

 Plugin processes 2,409,688,701 method calls and

reproduces the weighted dynamic dependency graphs 

at class and package level from the second experiment

[Schnoor and Hasselbring 2020]

 Disk usage

 Original tar.xz file: 8.89 GB

 Graph database: 110 MB*

 Scan and graph creation time

 1h 38min 29s

* This reduction is mainly due to omitting the node types Event and Trace including their

properties.
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CYPHER QUERY FOR METHOD CALLS 
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CYPHER QUERY FOR AVERAGE EXPORT 

COUPLING DEGREE ON CLASS LEVEL
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REPRODUCTION PACKAGE
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[https://github.com/softvis-research/SSP2020]

https://github.com/softvis-research/SSP2020
https://github.com/softvis-research/SSP2020
https://github.com/softvis-research/SSP2020
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FUTURE WORK

 Replicate the complete experiment from [Schnoor and 

Hasselbring 2020]

 Kieker plugin will be used to generate dynamic 

dependency graphs

 Java bytecode scanner plugin will be used to generate 

static dependency graphs
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[https://github.com/jQAssistant/jqa-java-plugin]

https://github.com/jQAssistant/jqa-java-plugin
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