
Graph-Based Performance Analysis at System-

and Application-Level

11th Symposium on Software Performance

Leipzig, November 13, 2020

Richard Müller and Tom Strempel



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

KIEKER

 The Kieker framework provides

 monitoring,

 analysis,

 and visualization support

for 

 application and system performance analysis as well as

 reverse engineering

2

[Hasselbring and van Hoorn 2020, http://kieker-monitoring.net/]

http://kieker-monitoring.net/


SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

KIEKER PLUGIN

 Transforms monitored log data into graphs

 Supports software engineers with performance analysis

and architecture discovery

3

[Müller and Fischer 2019, https://github.com/softvis-research/jqa-kieker-plugin]

https://github.com/softvis-research/jqa-kieker-plugin


SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

KIEKER PLUGIN ISSUES

 No support for system-level information, such as CPU 

and system memory utilization

 High disk usage due to redundant information in the 

graph schema

 Long scan times due to implementation flaws

 No evaluation with regard to scalability

4



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

CONTRIBUTIONS

 Kieker plugin was extended and improved to solve the

aforementioned issues

 Correctness and scalability of the revised plugin were 

evaluated by 

 processing data and

 reproducing analysis results

of two recent experiments

 A reproduction package is provided to replicate the

evaluation: https://github.com/softvis-research/SSP2020

5

https://github.com/softvis-research/SSP2020


SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

OLD KIEKER GRAPH SCHEMA

6

[Müller and Fischer 2019]



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

REVISED KIEKER GRAPH SCHEMA

Extension

Improvement

No change



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

1ST EXPERIMENT - HORA: ARCHITECTURE-AWARE 

ONLINE FAILURE PREDICTION

 Combine component failure predictors with architectural 

knowledge to improve failure prediction

8

[Pitakrat et al. 2018]



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

PERFORMANCE ANALYSIS AT SYSTEM-LEVEL

 Reproduce two line charts showing the system-level 

measures CPU and system memory utilization of the 

second business-tier instance from the first experiment 

[Pitakrat et al. 2018]

9



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

CYPHER QUERY FOR CPU UTILIZATION

10





SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

2ND EXPERIMENT - COMPARING STATIC AND DYNAMIC 

WEIGHTED SOFTWARE COUPLING METRICS

 Investigate how weighted dynamic coupling 

measurements can support software engineers to 

evaluate the architectural quality of software systems

11

[Schnoor and Hasselbring 2020]



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

PERFORMANCE ANALYSIS AT APPLICATION-LEVEL

 Plugin processes 2,409,688,701 method calls and

reproduces the weighted dynamic dependency graphs 

at class and package level from the second experiment

[Schnoor and Hasselbring 2020]

 Disk usage

 Original tar.xz file: 8.89 GB

 Graph database: 110 MB*

 Scan and graph creation time

 1h 38min 29s

* This reduction is mainly due to omitting the node types Event and Trace including their

properties.

12



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

CYPHER QUERY FOR METHOD CALLS 

13

=



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

CYPHER QUERY FOR AVERAGE EXPORT 

COUPLING DEGREE ON CLASS LEVEL

14

=



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

REPRODUCTION PACKAGE

15

[https://github.com/softvis-research/SSP2020]

https://github.com/softvis-research/SSP2020
https://github.com/softvis-research/SSP2020
https://github.com/softvis-research/SSP2020


SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

FUTURE WORK

 Replicate the complete experiment from [Schnoor and 

Hasselbring 2020]

 Kieker plugin will be used to generate dynamic 

dependency graphs

 Java bytecode scanner plugin will be used to generate 

static dependency graphs

16

[https://github.com/jQAssistant/jqa-java-plugin]

https://github.com/jQAssistant/jqa-java-plugin


SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

REFERENCES

 W. Hasselbring and A. van Hoorn. "Kieker: A monitoring framework 

for software engineering research". In: Software Impacts 5 (Aug. 

2020), pp. 1-5.

 R. Müller and M. Fischer. "Graph-Based Analysis and Visualization 

of Software Traces". In: 10th Symposium on Software Performance: 

Joint Developer and Community Meeting of 

Descartes/Kieker/Palladio. Würzburg, Germany, 2019.

 T. Pitakrat et al. "Hora: Architecture-aware online failure prediction". 

In: Journal of Systems and Software 137 (2018), pp. 669-685.

 H. Schnoor and W. Hasselbring. "Comparing Static and Dynamic 

Weighted Software Coupling Metrics". In: Computers 9.2 (Mar. 

2020), p. 24.

17



THANK YOU.

Richard Müller

Information Systems Institute, Chair of Software Engineering, Leipzig University

Tom Strempel

Master student in Computer Science, Leipzig University

rmueller@wifa.uni-leipzig.de

@rimllr

https://github.com/softvis-research

http://softvis.wifa.uni-leipzig.de

18

mailto:rmueller@wifa.uni-leipzig.de
https://github.com/softvis-research
http://softvis.wifa.uni-leipzig.de/

