UNIVERSITAT
LEIPZIG

11th Symposium on Software Performance

Graph-Based Performance Analysis at System-
and Application-Level

Leipzig, November 13, 2020
Richard Miuller and Tom Strempel




SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

@

ro
®
N
=

KIEKER

— The Kieker framework provides
— monitoring,
— analysis,
— and visualization support
for
— application and system performance analysis as well as
— reverse engineering

[Hasselbring and van Hoorn 2020, http://kieker-monitoring.net/]

HET;‘{,E&ESWM Information Systems Institute, Chair of Software Engineering 2


http://kieker-monitoring.net/

SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

KIEKER PLUGIN /QAssistant @ Neoy]

— Transforms monitored log data into graphs

— Supports software engineers with performance analysis
and architecture discovery

Kieker traces
(*.dat, *.map)

Y

Scan _ .
Kieker traces —7/K|eker records/L) Create Kieker graph

Kieker graph Apply Call & depen- End
rules dency graphs

[Muller and Fischer 2019, https://github.com/softvis-research/jga-kieker-plugin]

HET;‘{,E&ESWM Information Systems Institute, Chair of Software Engineering 3


https://github.com/softvis-research/jqa-kieker-plugin

SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

KIEKER PLUGIN ISSUES

— No support for system-level information, such as CPU
and system memory utilization

— High disk usage due to redundant information in the
graph schema

— Long scan times due to implementation flaws
— No evaluation with regard to scalability

EET;‘ZJEESWN Information Systems Institute, Chair of Software Engineering



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

CONTRIBUTIONS

— Kieker plugin was extended and improved to solve the
aforementioned issues

— Correctness and scalability of the revised plugin were
evaluated by
— processing data and
— reproducing analysis results
of two recent experiments

— Areproduction package is provided to replicate the
evaluation: https://github.com/softvis-research/SSP2020

EET;‘{,E(;ES'TN Information Systems Institute, Chair of Software Engineering


https://github.com/softvis-research/SSP2020

——— SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

OLD KIEKER GRAPH SCHEMA

controllerName: String
experimentld: int
fileName: String
hostname: String
loggingTimestamp: long|-{ Record
numberOfRecords: int
timeOffset: int
timeUnit: String
version: String

traceld: long

threadld: long
{hostName: String
loggingTimestamp: long
sessionld: String

CONTAINS

beforeTimestamp: long
|afterTimestamp: long
beforeOrderindex: int
afterOrderindex: int

timestamp: long
orderindex: int

name: String
signature: String name: Stng
duration: long - {name: £
incomingCalls: int DECLARES fqn: String

outgoingCalls: int

CALLS DEPENDS_ON ;
[Miller and Fischer 2019]

EE'}';;E‘S”’” Information Systems Institute, Chair of Software Engineering 6



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

REVISED KIEKER GRAPH SCHEMA

CPUUtilization: DiskUsage: LoadAverage: MemSwapUsage: NetworkUtilization:
Measurement Measurement Measurement Measurement Measurement
CONTAINS
Record Method Package
CONTAINS DECLARES CONTAINS
CALLS DEPENDS_ON DEPENDS_ON
Extension
Improvement

I:l No change

HET;‘{,E(?S'TN Information Systems Institute, Chair of Software Engineering



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

15T EXPERIMENT - HORA: ARCHITECTURE-AWARE
ONLINE FAILURE PREDICTION

— Combine component failure predictors with architectural
knowledge to improve failure prediction

Presentation Tier (PT) Business Tier (BT)
PT1 BT
LE y
Clients Load Balancer (LB) ’| ; ‘-( c : Database Tier (DT)
Service [ = ) BT2 DB
% e - L -
-
- [X ]
! ! ~
? ; I = .
- \
‘ : JeE \
| i
i
,f Distributed enterprise application system .
i
‘— e ]
— Service response time (sec) ' I I
I 9 o
\ « Failed requests : CPU utilization (%) Memory utilization (%)
: 1 100.0 100.0 /:___ T
. 1 [ f
I PN H
| il A ;
| Hf |H | / |
O 1 1 f H
| il ‘ | | H
: N | |
i | P =
I / | / :
1oood T oot | T R SR DY NP PR INOISIPNPE I8 N1 T SIS PSP NP O SO
I ‘ I
e 1
Measurements (system boundary) leasurements (system-i nal)
Fig. 1. Running example: high-level three-tier architecture and selected measurements. [Pltakrat et a-l 2018]

EE'}';;E‘S”’” Information Systems Institute, Chair of Software Engineering 8



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

PERFORMANCE ANALYSIS AT SYSTEM-LEVEL

— Reproduce two line charts showing the system-level
measures CPU and system memory utilization of the
second business-tier instance from the first experiment
[Pitakrat et al. 2018]

CPU utilization (%) Memory utilization (%)
100.0 100.0
-~
00 1 \f’xq'“_—_» T T T 00 1 T T T T
4:05 PM 3:55 PM

{’{.‘;ﬁ.ﬁ?s”’” Information Systems Institute, Chair of Software Engineering



——— SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

CYPHER QUERY FOR CPU UTILIZATION

MATCH (r:Record)-[:CONTAINS]—(c:CpuUtilization)
WHERE r.fileName =~ '.*/1-MemorylLeak-5/kieker-logs
/kieker-20150820-064855519-UTC-middletier2-KIEKER'
RETURN c.timestamp AS timestamp, c.cpulID AS cpulD,
c.totalUtilization * 100 AS cpuUtilization

ORDER BY timestamp

CPU utilization (%)

timestamp cpulD cpuUtilization 100.0
1440053336119231206 "0" 89.99999999999999
1440053336119479386 " 98.03921568627452

->
1440053345612040829 "0" 12.882787750791975
1440053345612101780 " 24.26160337552743
1440053355611996675 "0" 3.6000000000000005 001,
UNIVERSITAT

LEIPZIG Information Systems Institute, Chair of Software Engineering 10



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

2N EXPERIMENT - COMPARING STATIC AND DYNAMIC
WEIGHTED SOFTWARE COUPLING METRICS

— Investigate how weighted dynamic coupling
measurements can support software engineers to
evaluate the architectural quality of software systems

Table 1. Numbers of users and monitored calls. Table 10. Average Coupling Degrees in our four Experiments.
# Date Users Method Calls static dynamic
# classes packages classes packages
1 February 2017 19 196,442,044
2 September2017 48 854,657,027 1730 8742 40,058 143,483
3  February2018 16 __475357,185 2 %86 6922 144403 592,232
4 September2018 58 [ 2,409,688,701 3 580 6554 80,008 3/0.12]
e 4 580 6554 | 370,821 1,868,664 |

[Schnoor and Hasselbring 2020]

HET;‘{,E(?S'TN Information Systems Institute, Chair of Software Engineering 11



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

PERFORMANCE ANALYSIS AT APPLICATION-LEVEL

— Plugin processes 2,409,688,701 method calls and
reproduces the weighted dynamic dependency graphs
at class and package level from the second experiment
[Schnoor and Hasselbring 2020]

— Disk usage
— Original tar.xz file: 8.89 GB
— Graph database: 110 MB*

— Scan and graph creation time
— 1h 38min 29s

* This reduction is mainly due to omitting the node types Event and Trace including their
properties.

EET;‘ZJEESWN Information Systems Institute, Chair of Software Engineering 12



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

CYPHER QUERY FOR METHOD CALLS

MATCH (:Method:Kieker)-[calls:CALLS]—=(:Method:Kieker)
RETURN SUM(calls.weight) AS methodCalls

Table 1. Numbers of users and monitored calls.
methodCalls
# Date Users Method Calls
— 1 February 2017 19 196,442,044
- 2 September 2017 48 854,657,027
2409688701 3 February 2018 16 475 357,185
4  September 2018 58 2,409,688,701

EET;‘{EES”N Information Systems Institute, Chair of Software Engineering 13



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

CYPHER QUERY FOR AVERAGE EXPORT

COUPLING DEGREE ON CLASS LEVEL

MATCH (t:Type:Kieker)

WHERE (t)-[:DEPENDS _ON]—() OR ()-[:DEPENDS ON]—(t)
WITH t

OPTIONAL MATCH (t)-[out:DEPENDS ON]—()

WITH t, SUM(out.weight) AS import

OPTIONAL MATCH ()-[in:DEPENDS_ON]—(t)

WITH t, import, SUM(in.weight) AS export

RETURN ROUND(AVG(export)) AS averageExport

Table 10. Average Coupling Degrees in our four Experiments.

averageExport static dynamic
# classes packages classes packages
— 1 730 8742 40,058 143483
2 586 6922 144,403 592,232
370821.0 ’ ’
3 580 6554 80,698 375,121
4 580 6554 370,821) 1,868,664

EET;‘ZJEESHN Information Systems Institute, Chair of Software Engineering 14



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

REPRODUCTION PACKAGE

f. rmlir add dump 61cscob on 2 Sep D) 35 commits
binder use Hora dump 2 months ago
data add dump 2 months ago

[¥ 1. Performance analysis at system-lev...  clear output 2 months ago

[¥ 2. Performance analysis at application-... clear output 2 months ago

4 LICENSE Initial commit 3 months ago

[ READMEmd change order 2 months ago

README.md V.

SSP2020

Reproduction package for the paper "Graph-Based Performance Analysis at
System- and Application-Level”

Please, click on the binder badge to start the mybinder environment. Then you can run the jupyter notebooks (1.
Performance analysis at system-level.ipynb and 2. Performance analysis at application-levelipynb) and replicate the
analyses.

& launch |binder

External Credits

® Software Analytics with Pythen

® Binder and Neodj integration

[https://github.com/softvis-research/SSP2020]

EET;‘{EES”N Information Systems Institute, Chair of Software Engineering 15


https://github.com/softvis-research/SSP2020
https://github.com/softvis-research/SSP2020
https://github.com/softvis-research/SSP2020

SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

FUTURE WORK

— Replicate the complete experiment from [Schnoor and
Hasselbring 2020]

— Kieker plugin will be used to generate dynamic
dependency graphs

— Java bytecode scanner plugin will be used to generate
static dependency graphs

[https://github.com/jQAssistant/jga-java-plugin]

{’{.‘;!.2‘5”’” Information Systems Institute, Chair of Software Engineering 16


https://github.com/jQAssistant/jqa-java-plugin

SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

REFERENCES

— W. Hasselbring and A. van Hoorn. "Kieker: A monitoring framework
for software engineering research". In: Software Impacts 5 (Aug.
2020), pp. 1-5.

— R. Miller and M. Fischer. "Graph-Based Analysis and Visualization
of Software Traces". In: 10th Symposium on Software Performance:
Joint Developer and Community Meeting of
Descartes/Kieker/Palladio. Wirzburg, Germany, 2019.

— T. Pitakrat et al. "Hora: Architecture-aware online failure prediction".
In: Journal of Systems and Software 137 (2018), pp. 669-685.

— H. Schnoor and W. Hasselbring. "Comparing Static and Dynamic
Weighted Software Coupling Metrics". In: Computers 9.2 (Mar.
2020), p. 24.

EET;‘ZJEESWN Information Systems Institute, Chair of Software Engineering 17



UNIVERSITAT
LEIPZIG

THANK YOU.

Richard Miuller

Information Systems Institute, Chair of Software Engineering, Leipzig University
Tom Strempel

Master student in Computer Science, Leipzig University

rmueller@wifa.uni-leipzig.de
@rimllr
https://github.com/softvis-research
http://softvis.wifa.uni-leipzig.de

YOG

€



mailto:rmueller@wifa.uni-leipzig.de
https://github.com/softvis-research
http://softvis.wifa.uni-leipzig.de/

