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KIEKER

— The Kieker framework provides
— monitoring,
— analysis,
— and visualization support
for
— application and system performance analysis as well as
— reverse engineering

[Hasselbring and van Hoorn 2020, http://kieker-monitoring.net/]
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KIEKER PLUGIN /QAssistant @ Neoy]

— Transforms monitored log data into graphs

— Supports software engineers with performance analysis
and architecture discovery

Kieker traces
(*.dat, *.map)

Y

Scan _ .
Kieker traces —7/K|eker records/L) Create Kieker graph

Kieker graph Apply Call & depen- End
rules dency graphs

[Muller and Fischer 2019, https://github.com/softvis-research/jga-kieker-plugin]
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KIEKER PLUGIN ISSUES

— No support for system-level information, such as CPU
and system memory utilization

— High disk usage due to redundant information in the
graph schema

— Long scan times due to implementation flaws
— No evaluation with regard to scalability
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CONTRIBUTIONS

— Kieker plugin was extended and improved to solve the
aforementioned issues

— Correctness and scalability of the revised plugin were
evaluated by
— processing data and
— reproducing analysis results
of two recent experiments

— Areproduction package is provided to replicate the
evaluation: https://github.com/softvis-research/SSP2020
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OLD KIEKER GRAPH SCHEMA

controllerName: String
experimentld: int
fileName: String
hostname: String
loggingTimestamp: long|-{ Record
numberOfRecords: int
timeOffset: int
timeUnit: String
version: String

traceld: long

threadld: long
{hostName: String
loggingTimestamp: long
sessionld: String

CONTAINS

beforeTimestamp: long
|afterTimestamp: long
beforeOrderindex: int
afterOrderindex: int

timestamp: long
orderindex: int

name: String
signature: String name: Stng
duration: long - {name: £
incomingCalls: int DECLARES fqn: String

outgoingCalls: int

CALLS DEPENDS_ON ;
[Miller and Fischer 2019]
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REVISED KIEKER GRAPH SCHEMA

CPUUtilization: DiskUsage: LoadAverage: MemSwapUsage: NetworkUtilization:
Measurement Measurement Measurement Measurement Measurement
CONTAINS
Record Method Package
CONTAINS DECLARES CONTAINS
CALLS DEPENDS_ON DEPENDS_ON
Extension
Improvement

I:l No change
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15T EXPERIMENT - HORA: ARCHITECTURE-AWARE
ONLINE FAILURE PREDICTION

— Combine component failure predictors with architectural
knowledge to improve failure prediction
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Fig. 1. Running example: high-level three-tier architecture and selected measurements. [Pltakrat et a-l 2018]
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PERFORMANCE ANALYSIS AT SYSTEM-LEVEL

— Reproduce two line charts showing the system-level
measures CPU and system memory utilization of the
second business-tier instance from the first experiment
[Pitakrat et al. 2018]

CPU utilization (%) Memory utilization (%)
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CYPHER QUERY FOR CPU UTILIZATION

MATCH (r:Record)-[:CONTAINS]—(c:CpuUtilization)
WHERE r.fileName =~ '.*/1-MemorylLeak-5/kieker-logs
/kieker-20150820-064855519-UTC-middletier2-KIEKER'
RETURN c.timestamp AS timestamp, c.cpulID AS cpulD,
c.totalUtilization * 100 AS cpuUtilization

ORDER BY timestamp

CPU utilization (%)

timestamp cpulD cpuUtilization 100.0
1440053336119231206 "0" 89.99999999999999
1440053336119479386 " 98.03921568627452

->
1440053345612040829 "0" 12.882787750791975
1440053345612101780 " 24.26160337552743
1440053355611996675 "0" 3.6000000000000005 001,
UNIVERSITAT
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2N EXPERIMENT - COMPARING STATIC AND DYNAMIC
WEIGHTED SOFTWARE COUPLING METRICS

— Investigate how weighted dynamic coupling
measurements can support software engineers to
evaluate the architectural quality of software systems

Table 1. Numbers of users and monitored calls. Table 10. Average Coupling Degrees in our four Experiments.
# Date Users Method Calls static dynamic
# classes packages classes packages
1 February 2017 19 196,442,044
2 September2017 48 854,657,027 1730 8742 40,058 143,483
3  February2018 16 __475357,185 2 %86 6922 144403 592,232
4 September2018 58 [ 2,409,688,701 3 580 6554 80,008 3/0.12]
e 4 580 6554 | 370,821 1,868,664 |

[Schnoor and Hasselbring 2020]
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PERFORMANCE ANALYSIS AT APPLICATION-LEVEL

— Plugin processes 2,409,688,701 method calls and
reproduces the weighted dynamic dependency graphs
at class and package level from the second experiment
[Schnoor and Hasselbring 2020]

— Disk usage
— Original tar.xz file: 8.89 GB
— Graph database: 110 MB*

— Scan and graph creation time
— 1h 38min 29s

* This reduction is mainly due to omitting the node types Event and Trace including their
properties.
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CYPHER QUERY FOR METHOD CALLS

MATCH (:Method:Kieker)-[calls:CALLS]—=(:Method:Kieker)
RETURN SUM(calls.weight) AS methodCalls

Table 1. Numbers of users and monitored calls.
methodCalls
# Date Users Method Calls
— 1 February 2017 19 196,442,044
- 2 September 2017 48 854,657,027
2409688701 3 February 2018 16 475 357,185
4  September 2018 58 2,409,688,701

EET;‘{EES”N Information Systems Institute, Chair of Software Engineering 13



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

CYPHER QUERY FOR AVERAGE EXPORT

COUPLING DEGREE ON CLASS LEVEL

MATCH (t:Type:Kieker)

WHERE (t)-[:DEPENDS _ON]—() OR ()-[:DEPENDS ON]—(t)
WITH t

OPTIONAL MATCH (t)-[out:DEPENDS ON]—()

WITH t, SUM(out.weight) AS import

OPTIONAL MATCH ()-[in:DEPENDS_ON]—(t)

WITH t, import, SUM(in.weight) AS export

RETURN ROUND(AVG(export)) AS averageExport

Table 10. Average Coupling Degrees in our four Experiments.

averageExport static dynamic
# classes packages classes packages
— 1 730 8742 40,058 143483
2 586 6922 144,403 592,232
370821.0 ’ ’
3 580 6554 80,698 375,121
4 580 6554 370,821) 1,868,664
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REPRODUCTION PACKAGE

f. rmlir add dump 61cscob on 2 Sep D) 35 commits
binder use Hora dump 2 months ago
data add dump 2 months ago

[¥ 1. Performance analysis at system-lev...  clear output 2 months ago

[¥ 2. Performance analysis at application-... clear output 2 months ago

4 LICENSE Initial commit 3 months ago

[ READMEmd change order 2 months ago

README.md V.

SSP2020

Reproduction package for the paper "Graph-Based Performance Analysis at
System- and Application-Level”

Please, click on the binder badge to start the mybinder environment. Then you can run the jupyter notebooks (1.
Performance analysis at system-level.ipynb and 2. Performance analysis at application-levelipynb) and replicate the
analyses.

& launch |binder

External Credits

® Software Analytics with Pythen

® Binder and Neodj integration

[https://github.com/softvis-research/SSP2020]
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FUTURE WORK

— Replicate the complete experiment from [Schnoor and
Hasselbring 2020]

— Kieker plugin will be used to generate dynamic
dependency graphs

— Java bytecode scanner plugin will be used to generate
static dependency graphs

[https://github.com/jQAssistant/jga-java-plugin]
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