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KIEKER

 The Kieker framework provides

 monitoring,

 analysis,

 and visualization support

for 

 application and system performance analysis as well as

 reverse engineering

2

[Hasselbring and van Hoorn 2020, http://kieker-monitoring.net/]

http://kieker-monitoring.net/
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KIEKER PLUGIN

 Transforms monitored log data into graphs

 Supports software engineers with performance analysis

and architecture discovery
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[Müller and Fischer 2019, https://github.com/softvis-research/jqa-kieker-plugin]

https://github.com/softvis-research/jqa-kieker-plugin
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KIEKER PLUGIN ISSUES

 No support for system-level information, such as CPU 

and system memory utilization

 High disk usage due to redundant information in the 

graph schema

 Long scan times due to implementation flaws

 No evaluation with regard to scalability
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CONTRIBUTIONS

 Kieker plugin was extended and improved to solve the

aforementioned issues

 Correctness and scalability of the revised plugin were 

evaluated by 

 processing data and

 reproducing analysis results

of two recent experiments

 A reproduction package is provided to replicate the

evaluation: https://github.com/softvis-research/SSP2020
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https://github.com/softvis-research/SSP2020
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OLD KIEKER GRAPH SCHEMA
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[Müller and Fischer 2019]
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REVISED KIEKER GRAPH SCHEMA

Extension

Improvement

No change
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1ST EXPERIMENT - HORA: ARCHITECTURE-AWARE 

ONLINE FAILURE PREDICTION

 Combine component failure predictors with architectural 

knowledge to improve failure prediction
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[Pitakrat et al. 2018]
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PERFORMANCE ANALYSIS AT SYSTEM-LEVEL

 Reproduce two line charts showing the system-level 

measures CPU and system memory utilization of the 

second business-tier instance from the first experiment 

[Pitakrat et al. 2018]
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CYPHER QUERY FOR CPU UTILIZATION
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2ND EXPERIMENT - COMPARING STATIC AND DYNAMIC 

WEIGHTED SOFTWARE COUPLING METRICS

 Investigate how weighted dynamic coupling 

measurements can support software engineers to 

evaluate the architectural quality of software systems
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[Schnoor and Hasselbring 2020]
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PERFORMANCE ANALYSIS AT APPLICATION-LEVEL

 Plugin processes 2,409,688,701 method calls and

reproduces the weighted dynamic dependency graphs 

at class and package level from the second experiment

[Schnoor and Hasselbring 2020]

 Disk usage

 Original tar.xz file: 8.89 GB

 Graph database: 110 MB*

 Scan and graph creation time

 1h 38min 29s

* This reduction is mainly due to omitting the node types Event and Trace including their

properties.
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CYPHER QUERY FOR METHOD CALLS 
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CYPHER QUERY FOR AVERAGE EXPORT 

COUPLING DEGREE ON CLASS LEVEL
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REPRODUCTION PACKAGE
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[https://github.com/softvis-research/SSP2020]

https://github.com/softvis-research/SSP2020
https://github.com/softvis-research/SSP2020
https://github.com/softvis-research/SSP2020
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FUTURE WORK

 Replicate the complete experiment from [Schnoor and 

Hasselbring 2020]

 Kieker plugin will be used to generate dynamic 

dependency graphs

 Java bytecode scanner plugin will be used to generate 

static dependency graphs

16

[https://github.com/jQAssistant/jqa-java-plugin]

https://github.com/jQAssistant/jqa-java-plugin
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