
Graph-Based Performance Analysis at System-

and Application-Level

11th Symposium on Software Performance

Leipzig, November 13, 2020

Richard Müller and Tom Strempel



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

KIEKER

 The Kieker framework provides

 monitoring,

 analysis,

 and visualization support

for 

 application and system performance analysis as well as

 reverse engineering

2

[Hasselbring and van Hoorn 2020, http://kieker-monitoring.net/]

http://kieker-monitoring.net/


SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

KIEKER PLUGIN

 Transforms monitored log data into graphs

 Supports software engineers with performance analysis

and architecture discovery

3

[Müller and Fischer 2019, https://github.com/softvis-research/jqa-kieker-plugin]

https://github.com/softvis-research/jqa-kieker-plugin


SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

KIEKER PLUGIN ISSUES

 No support for system-level information, such as CPU 

and system memory utilization

 High disk usage due to redundant information in the 

graph schema

 Long scan times due to implementation flaws

 No evaluation with regard to scalability

4



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

CONTRIBUTIONS

 Kieker plugin was extended and improved to solve the

aforementioned issues

 Correctness and scalability of the revised plugin were 

evaluated by 

 processing data and

 reproducing analysis results

of two recent experiments

 A reproduction package is provided to replicate the

evaluation: https://github.com/softvis-research/SSP2020

5

https://github.com/softvis-research/SSP2020


SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

OLD KIEKER GRAPH SCHEMA

6

[Müller and Fischer 2019]



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

REVISED KIEKER GRAPH SCHEMA

Extension

Improvement

No change



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

1ST EXPERIMENT - HORA: ARCHITECTURE-AWARE 

ONLINE FAILURE PREDICTION

 Combine component failure predictors with architectural 

knowledge to improve failure prediction

8

[Pitakrat et al. 2018]



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

PERFORMANCE ANALYSIS AT SYSTEM-LEVEL

 Reproduce two line charts showing the system-level 

measures CPU and system memory utilization of the 

second business-tier instance from the first experiment 

[Pitakrat et al. 2018]

9



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

CYPHER QUERY FOR CPU UTILIZATION

10





SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

2ND EXPERIMENT - COMPARING STATIC AND DYNAMIC 

WEIGHTED SOFTWARE COUPLING METRICS

 Investigate how weighted dynamic coupling 

measurements can support software engineers to 

evaluate the architectural quality of software systems

11

[Schnoor and Hasselbring 2020]



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

PERFORMANCE ANALYSIS AT APPLICATION-LEVEL

 Plugin processes 2,409,688,701 method calls and

reproduces the weighted dynamic dependency graphs 

at class and package level from the second experiment

[Schnoor and Hasselbring 2020]

 Disk usage

 Original tar.xz file: 8.89 GB

 Graph database: 110 MB*

 Scan and graph creation time

 1h 38min 29s

* This reduction is mainly due to omitting the node types Event and Trace including their

properties.

12



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

CYPHER QUERY FOR METHOD CALLS 

13

=



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

CYPHER QUERY FOR AVERAGE EXPORT 

COUPLING DEGREE ON CLASS LEVEL

14

=



SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

REPRODUCTION PACKAGE

15

[https://github.com/softvis-research/SSP2020]

https://github.com/softvis-research/SSP2020
https://github.com/softvis-research/SSP2020
https://github.com/softvis-research/SSP2020


SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

FUTURE WORK

 Replicate the complete experiment from [Schnoor and 

Hasselbring 2020]

 Kieker plugin will be used to generate dynamic 

dependency graphs

 Java bytecode scanner plugin will be used to generate 

static dependency graphs

16

[https://github.com/jQAssistant/jqa-java-plugin]

https://github.com/jQAssistant/jqa-java-plugin


SSP 2020 | Graph-Based Performance Analysis at System- and Application-Level

Information Systems Institute, Chair of Software Engineering

REFERENCES

 W. Hasselbring and A. van Hoorn. "Kieker: A monitoring framework 

for software engineering research". In: Software Impacts 5 (Aug. 

2020), pp. 1-5.

 R. Müller and M. Fischer. "Graph-Based Analysis and Visualization 

of Software Traces". In: 10th Symposium on Software Performance: 

Joint Developer and Community Meeting of 

Descartes/Kieker/Palladio. Würzburg, Germany, 2019.

 T. Pitakrat et al. "Hora: Architecture-aware online failure prediction". 

In: Journal of Systems and Software 137 (2018), pp. 669-685.

 H. Schnoor and W. Hasselbring. "Comparing Static and Dynamic 

Weighted Software Coupling Metrics". In: Computers 9.2 (Mar. 

2020), p. 24.

17



THANK YOU.

Richard Müller

Information Systems Institute, Chair of Software Engineering, Leipzig University

Tom Strempel

Master student in Computer Science, Leipzig University

rmueller@wifa.uni-leipzig.de

@rimllr

https://github.com/softvis-research

http://softvis.wifa.uni-leipzig.de

18

mailto:rmueller@wifa.uni-leipzig.de
https://github.com/softvis-research
http://softvis.wifa.uni-leipzig.de/

