
Combating Run-time
Performance Bugs with

Performance Claim Annotations

November 12, 2020

Zachery Casey & Michael Shah

casey.z@northeastern.edu mikeshah@northeastern.edu

mailto:casey.z@northeastern.edu
mailto:mikeshah@northeastern.edu

Performance Bugs and Specifications
- Specifications can be small

- Specifications are necessary for code reuse

- Abstraction can make performance hard

2

Methods for finding Performance Bugs
1. Ad-hoc inline checks (printf debugging)

2. Ad-hoc tools (e.g. gprof, VTune)

3. Testing (e.g. Freud, RadarGun)

3

GNU gprof
http://sourceware.org/binutils/docs/gprof/

Intel VTune
https://software.intel.com/en-us/vtune

Analyzing system performance with
probabilistic performance annotations
EuroSys '20: Proceedings of the Fifteenth
European Conference on Computer Systems
https://doi.org/10.1145/3342195.3387554

RadarGun: Toward a Performance Testing
Framework
8th Symposium on Software Performance 2017
RadarGun

http://sourceware.org/binutils/docs/gprof/
https://software.intel.com/en-us/vtune
https://dl.acm.org/doi/proceedings/10.1145/3342195
https://dl.acm.org/doi/proceedings/10.1145/3342195
https://doi.org/10.1145/3342195.3387554
https://www.performance-symposium.org/2017/
https://www.performance-symposium.org/fileadmin/user_upload/palladio-conference/2017/papers/RadarGun_Toward_a_Performance_Testing_Framework.pdf

Our Criteria
1. In-source performance specifications

2. Toggle without recompilation

3. “Accurate”

4

Related Work - Mobile Performance Assertions
- pa_start(id) → pa_end(id, assertion)

- Inter Process Communication (IPC) backend

- Opening the calendar application should take less than 2
seconds plus 5 ms per each appointment in current month

5

Performance assertions for mobile devices
ISSTA '06: Proceedings of the 2006 international
symposium on Software testing and analysis
https://doi.org/10.1145/1146238.1146264

https://dl.acm.org/doi/proceedings/10.1145/1146238
https://dl.acm.org/doi/proceedings/10.1145/1146238
https://doi.org/10.1145/1146238.1146264

Related Work - Mobile Performance Assertions
- Implemented as library

- Closed system (software and hardware)

- Records unnecessary information (1.7ms/3ms)

6

Our Criteria
1. In-source performance specifications

2. Toggle without recompilation

3. “Accurate”

7

Our Criteria
1. In-source performance specifications

2. Toggle without recompilation

3. “Accurate”

8

Performance Claim Annotation
● Simple, motivating

example...

9

Figure 1: PCA on unnecessary allocation

Performance Claim Annotation
● Clear documentation

● Clear type signature

10

Figure 1: PCA on unnecessary allocation

Performance Claim Annotation
● Straightforward

implementation

11

Figure 1: PCA on unnecessary allocation

Performance Claim Annotation
● Implicit requirement in

documentation

● Extra requirement on
type

12

Figure 1: PCA on unnecessary allocation

Performance Claim Annotation
● Maximum number of

allocations in a scope

● Implementation should
have <= 1 allocations

13

Figure 1: PCA on unnecessary allocation

Performance Claim Annotation
● Maximum number of

allocations in a scope

● Implementation should
have <= 1 allocations

14

Figure 1: PCA on unnecessary allocation

Performance Claim Annotation
● Maximum number of

allocations in a scope

● Implementation should
have <= 1 allocations

15

Figure 1: PCA on unnecessary allocation

PCA Overview
1. Write performance claims in assert style or start-end

2. Compile with debug information

3. Check PCAs using dynamic binary instrumentation (Pin)

16

Using DWARF
PCA(MaxAlloc, PCA_INT 1);

char __pca_MaxAlloc_int_1;

Expands to

Compile
s to

17DWARF Debugging Standard
http://dwarfstd.org/

NOOP
+
__pca_MaxAlloc_int_1
Line 8, PC: 0x1150
Scope: Line 3-15
 0x1146-0x1196

http://dwarfstd.org/

Using DWARF
● Annotations are stored in the binary

● No runtime overhead

● Can freely access annotations as required

18

Using DWARF
$ read_pcas ./exec ./pcas.txt

$ cat ./pcas.txt

MaxAlloc INT 1 [1146 1196]

19

Pin - Dynamic Binary Instrumentation (DBI)
● Dynamically insert instrumentation at any location

● Instrumentation is performed at run-time, can be toggled

● Inspect, at instruction-level, program execution

20

A dynamic binary instrumentation engine for the
ARM architecture
CASES '06: Proceedings of the 2006 international
conference on Compilers, architecture and
synthesis for embedded systems
https://doi.org/10.1145/1176760.1176793
Pin Site

https://dl.acm.org/doi/proceedings/10.1145/1176760
https://dl.acm.org/doi/proceedings/10.1145/1176760
https://dl.acm.org/doi/proceedings/10.1145/1176760
https://doi.org/10.1145/1176760.1176793
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html

Our Criteria
1. In-source performance specifications (DWARF)

2. Toggle without recompilation (Dynamic BI)

3. “Accurate” (NOOP, Look-ahead)

21

Writing PCAs with Pin
● Maximum number of

allocations in a scope

● Plugin-style API

22Figure 2: Checking calls to malloc

Writing PCAs with Pin
● Maximum number of

allocations in a scope

● Plugin-style API

23Figure 2: Checking calls to malloc

Writing PCAs with Pin
● PCA data and Pin

accessed through PCA

● Register hooks at start
and end of PCA block

24Figure 2: Checking calls to malloc

Writing PCAs with Pin
● Add a callback for when

malloc is invoked

● Count the number of
times malloc is called

25Figure 2: Checking calls to malloc

Writing PCAs with Pin
● Add a callback for when

malloc is invoked

● Count the number of
times malloc is called

26Figure 2: Checking calls to malloc

Writing PCAs with Pin
● Add a callback for when

malloc is invoked

● Count the number of
times malloc is called

27Figure 2: Checking calls to malloc

Writing PCAs with Pin
● Retrieve argument(s)

● Check the PCA

● Cleanup

28Figure 2: Checking calls to malloc

Writing PCAs with Pin
● Retrieve argument(s)

● Check the PCA

● Cleanup

29Figure 2: Checking calls to malloc

Writing PCAs with Pin
● Retrieve argument(s)

● Check the PCA

● Cleanup

30Figure 2: Checking calls to malloc

Writing PCAs with Pin
● Retrieve argument(s)

● Check the PCA

● Cleanup

31Figure 2: Checking calls to malloc

All Together
$ gcc -g -O3 main.c -o exec

$ read_pcas ./exec ./pcas.txt

$./pin -t pca.so -i ./pcas.txt -- ./exec

32

Summary - A simple mechanism to:
1. Specify performance requirements for functions which

may be difficult when testing

2. Assist in document assumptions callers can make about a

functions̓ execution

3. Check annotations easily and dynamically
33

Questions and Future Work
1. Can programmers easily integrate it into their workflow?

2. Where is this more general system applicable?

Everywhere? Server software? Or is it only a minor

upgrade for embedded devices?

34

Thank You

Zachery Casey & Michael Shah

casey.z@northeastern.edu mikeshah@northeastern.edu

mailto:casey.z@northeastern.edu
mailto:mikeshah@northeastern.edu

