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Performance Bugs and Specifications
- Specifications can be small

- Specifications are necessary for code reuse

- Abstraction can make performance hard
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Methods for finding Performance Bugs
1. Ad-hoc inline checks (printf debugging)

2. Ad-hoc tools (e.g. gprof, VTune)

3. Testing (e.g. Freud, RadarGun)
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GNU gprof
http://sourceware.org/binutils/docs/gprof/

Intel VTune
https://software.intel.com/en-us/vtune

Analyzing system performance with 
probabilistic performance annotations
EuroSys '20: Proceedings of the Fifteenth 
European Conference on Computer Systems
https://doi.org/10.1145/3342195.3387554

RadarGun: Toward a Performance Testing 
Framework
8th Symposium on Software Performance 2017
RadarGun

http://sourceware.org/binutils/docs/gprof/
https://software.intel.com/en-us/vtune
https://dl.acm.org/doi/proceedings/10.1145/3342195
https://dl.acm.org/doi/proceedings/10.1145/3342195
https://doi.org/10.1145/3342195.3387554
https://www.performance-symposium.org/2017/
https://www.performance-symposium.org/fileadmin/user_upload/palladio-conference/2017/papers/RadarGun_Toward_a_Performance_Testing_Framework.pdf


Our Criteria
1. In-source performance specifications

2. Toggle without recompilation

3. “Accurate”
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Related Work - Mobile Performance Assertions
- pa_start(id) → pa_end(id, assertion)

- Inter Process Communication (IPC) backend 

- Opening  the  calendar  application  should  take  less  than  2  
seconds  plus  5  ms  per  each  appointment  in  current month
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Performance assertions for mobile devices
ISSTA '06: Proceedings of the 2006 international 
symposium on Software testing and analysis 
https://doi.org/10.1145/1146238.1146264

https://dl.acm.org/doi/proceedings/10.1145/1146238
https://dl.acm.org/doi/proceedings/10.1145/1146238
https://doi.org/10.1145/1146238.1146264


Related Work - Mobile Performance Assertions
- Implemented as library

- Closed system (software and hardware)

- Records unnecessary information (1.7ms/3ms)
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Performance Claim Annotation
● Simple, motivating 

example...
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Figure 1: PCA on unnecessary allocation



Performance Claim Annotation
● Clear documentation

● Clear type signature
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Figure 1: PCA on unnecessary allocation



Performance Claim Annotation
● Straightforward 

implementation
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Performance Claim Annotation
● Implicit requirement in 

documentation

● Extra requirement on 
type
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Performance Claim Annotation
● Maximum number of 

allocations in a scope

● Implementation should 
have <= 1 allocations
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PCA Overview
1. Write performance claims in assert style or start-end

2. Compile with debug information

3. Check PCAs using dynamic binary instrumentation (Pin)
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Using DWARF 
PCA(MaxAlloc, PCA_INT 1);

char __pca_MaxAlloc_int_1;

Expands to

Compile
s to

17DWARF Debugging Standard
http://dwarfstd.org/

NOOP
+
__pca_MaxAlloc_int_1
Line 8, PC: 0x1150
Scope: Line 3-15
       0x1146-0x1196

http://dwarfstd.org/


Using DWARF
● Annotations are stored in the binary

● No runtime overhead

● Can freely access annotations as required
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Using DWARF
$ read_pcas ./exec ./pcas.txt

$ cat ./pcas.txt

MaxAlloc INT 1 [1146 1196]
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Pin - Dynamic Binary Instrumentation (DBI)
● Dynamically insert instrumentation at any location

● Instrumentation is performed at run-time, can be toggled

● Inspect, at instruction-level, program execution
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A dynamic binary instrumentation engine for the 
ARM architecture
CASES '06: Proceedings of the 2006 international 
conference on Compilers, architecture and 
synthesis for embedded systems
https://doi.org/10.1145/1176760.1176793
Pin Site

https://dl.acm.org/doi/proceedings/10.1145/1176760
https://dl.acm.org/doi/proceedings/10.1145/1176760
https://dl.acm.org/doi/proceedings/10.1145/1176760
https://doi.org/10.1145/1176760.1176793
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html


Our Criteria
1. In-source performance specifications (DWARF)

2. Toggle without recompilation (Dynamic BI)

3. “Accurate” (NOOP, Look-ahead)
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Writing PCAs with Pin
● Maximum number of 

allocations in a scope

● Plugin-style API

22Figure 2: Checking calls to malloc
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Writing PCAs with Pin
● PCA data and Pin 

accessed through PCA

● Register hooks at start 
and end of PCA block
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Writing PCAs with Pin
● Add a callback for when 

malloc is invoked

● Count the number of 
times malloc is called
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Writing PCAs with Pin
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Writing PCAs with Pin
● Retrieve argument(s)

● Check the PCA

● Cleanup
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All Together
$ gcc -g -O3 main.c -o exec

$ read_pcas ./exec ./pcas.txt

$ ./pin -t pca.so -i ./pcas.txt -- ./exec
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Summary - A simple mechanism to:
1. Specify performance requirements for functions which 

may be difficult when testing

2. Assist in document assumptions callers can make about a 

functions̓ execution

3. Check annotations easily and dynamically
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Questions and Future Work
1. Can programmers easily integrate it into their workflow?

2. Where is this more general system applicable? 

Everywhere? Server software? Or is it only a minor 

upgrade for embedded devices?
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