

Benchmarking Al-methods on Heterogeneous Hardware Resources

Christopher Hesse, Holger Eichelberger

{eichelberger}@sse.uni-hildesheim.de,
hessech@uni-hildesheim.de

Software Systems Engineering University of Hildesheim

HAISEM-Lab

www.sse.uni-hildesheim.de

Benchmarking AI-methods on Heterogeneous Hardware Resources

Motivation

- Artificial Intelligence (AI) is "everywhere"
- HAISEM-Lab (http://haisem-lab.de/)
 - BMBF founded AI lab
 - Hardware-optimized Artificial Intelligence Applications using modern Software Engineering Methods
 - Qualification and training for industry personnel
 - AI/Hardware/SE research
- Partners
 - University of Hannover (L3S, IMS)
 - University of Hildesheim (SSE)

HAISEM-Lab

2

Benchmarking AI-methods on Heterogeneous Hardware Resources

Problem

- Hardware for AI
 - GPU server 8 NVIDIA Tesla

FPGA server with 2 Maxeler Maia cards

TPU/GPU developer boards, GPU laptops

How to compare AI performance (speed, energy) across **all** heterogeneous hardware resources?

• Existing approaches: At least one hardware type missing

Approach

- Focus: Convolutional Neural Networks
 - "What's in this image?"
- Bottom-Up
 - Microbenchmarks
 - Convolution
 - Pooling
 - Macrobenchmarks
 - Training
 - Inference

- Varying input/filter size, e.g., 100x100, 1000x1000, ...
- Run each benchmark for *n* seconds
- Measure per iteration / benchmark
 - CPU/GPU time
 - Energy

Preliminary results

2D Convolution	Laptop (CPU)	Laptop (GPU)	Server (CPU)	Server (GPU)
Speedup	1.0x	~ 10-20x	1.0x	~ 10-75x
GPU Power			45 W	65-295 W
Active Power			760-850 W	760-1150 W

CNN Training 32x32	Laptop (CPU)	Laptop (GPU)	Server (CPU)	Server (GPU)	
Speedup	1.0x	~ 1.2x	1.0x	~ 1.6x	
Memory	~ 4.5 GB	~ 5.6 GB	~ 5.0 GB	~ 8.3 GB	
	Input size too small? 224x224				
			scales much better.		

11/10/2020

Benchmarking AI-methods on Heterogeneous Hardware Resources

Preliminary results

2D Convolution (DGX-1 Server, GPU)

• Width x Height x Channels

11/10/2020

Benchmarking AI-methods on Heterogeneous Hardware Resources

Conclusions & Future Work

- Microbenchmarks: good scaling with hardware capability
- Macrobenchmarks: it depends ;)
- Compare with more/less GPUs
- Realize micro-benchmarks on FPGA
- Compare with existing benchmarks where possible
- Derive "best practice" tradeoffs

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

