
© Prof. Dr. H. Krcmar

Technische Universität München

© Prof. Dr. H. Krcmar

Johannes Rank, M.Sc. 

Chair for Information Systems (Prof. Dr. Helmut Krcmar)

Technische Universität München

johannes.rank@tum.de

Symposium on Software Performance

13th November 2020

A Dynamic Resource Demand Analysis 

Approach for Stream Processing Systems



© Prof. Dr. H. Krcmar

Technische Universität München

© Prof. Dr. H. Krcmar2

▪ What is Event Stream Processing?

▪ Examples: Market feed processing, infrastructure monitoring, fraud detection 
(Stonebraker, M., et al. 2005)

▪ Importance of Performance for Stream Processing

▪ For SPS performance is not only a quality of service aspect, but vital for the 

whole business scenario to succeed (Stonebraker, M., et al. 2005)

▪ Crucial need for building scalable systems to enable the processing of 

vast amounts of streamed data (Bedini et al. 2013)

Motivation



© Prof. Dr. H. Krcmar

Technische Universität München

© Prof. Dr. H. Krcmar3

▪ Stream Processor Engines (SPE)

▪ Stream Processing Application (SPA)

How to compare performance between systems?

Stream Processing Systems Diversity

SPE Language Support

Flink Java, Python

Apex Java, JavaScript, Python, R, Ruby

IBM Infosphere Streams SPL (Streams Processing Language), Java, C++

SAP Hana Streaming Analytics CCL (Continuous Computation Language)

Apache Spark Streaming Java, Python

Apache Storm Java, Python, Ruby, Javascript, Perl



© Prof. Dr. H. Krcmar

Technische Universität München

© Prof. Dr. H. Krcmar4

▪ Related work focuses on throughput and latency
▪ Throughput and latency (Chintapalli, S., et al. 2016)

▪ Maximum sustainable throughput (Karimov et al. 2018)

▪ Latency measurement for individual processing stages (Dongen et al. 2018+2020)

➢ Easy to measure 

➢ But no insights into the resource demands

▪ Resource efficiency becomes increasingly important for stream processing

▪ IoT edged computing with limited resources (e.g. Raspberry Pi 3) (Xhafa, F., et al. 

2020)

▪ Cost advantage in large-scale deployments

Related Work



© Prof. Dr. H. Krcmar

Technische Universität München

© Prof. Dr. H. Krcmar5

▪ Measuring resource demand of

individual operations of the streaming

application and the engine itself …

▪ without language centric tools (e.g. 

Java Profiler),

▪ dynamically (applicable for running 

applications),

▪ without source code knowledge

▪ and production safe (non-disruptive 

performance overhead)

Idea



© Prof. Dr. H. Krcmar

Technische Universität München

© Prof. Dr. H. Krcmar6

Toolchain

Collect all PIDs and TIDs of the SPE and Application

Trace consumed events/data in bytes

For all PIDs identified in step 1, count the number of cycles and instructions via PMC

For the PID of the streaming application sample stack traces at 999 Hz

Combine the results from 2.1 – 2.3 to calculate the absolute CPU demand for the SPE and 

application, as well as the individual cpu/byte demand for every processing task

1

2.1

2.2

2.3

3+4



© Prof. Dr. H. Krcmar

Technische Universität München

© Prof. Dr. H. Krcmar7

Technology

▪ eBPF (Extended Berkley Package Filter) – Step 2.2

▪ Added to the Linux Kernel in release 3.18 (KernelNewbies 2014)

▪ Allows to process events in Kernel space

▪ Bpftrace is a high-level language for eBPF

▪ Enables efficient stack sampling (Phase 2.3) and Workload tracing (Phase 2.1)

Before eBPF With eBPF

Gregg, B. (2019)



© Prof. Dr. H. Krcmar

Technische Universität München

© Prof. Dr. H. Krcmar8

Technology

▪ PMC (Performance Monitoring Counters) – Step 2.2 (Gregg, B. 2019)

▪ Programmable counters on the CPU

▪ Dedicated registers on the CPU to collect performance metrics
➢ Counting the number of cycles or instructions costs practically no performance

overhead

▪ PMCs need to be supported by a hypervisor in virtualized environments
➢ Supported by Xen

➢ Available in AWS since 2017

▪ Access to PMC via the perf_events utility

▪ BPF tracers may call the perf_events utility to access PMC information

Gregg, B. (2019)



© Prof. Dr. H. Krcmar

Technische Universität München

© Prof. Dr. H. Krcmar9

Experiment

▪ Execute the Yahoo streaming benchmark (Chintapalli, S., et al. 2016) and measure the 

performance demand of Apache Flink in a single-node configuration

▪ Measured with two load variants 2k events/s and 4k events/s

(Chintapalli, S., 

et al. 2016)



© Prof. Dr. H. Krcmar

Technische Universität München

© Prof. Dr. H. Krcmar10

Experiment

▪ Methodnames are obtained via the java symbol names (requires jdk-debug package)

▪ For each processing task the actual consumed CPU instructions can be collected

▪ Results are consistent for measurments >30min (distribution of CPU consumption among tasks)

▪ Minor processing tasks such as the „filter“ are not visible due to their neglectable performance

impact

▪ No considerable performance overhead during measurement

CPU instructions for processing 1 Byte from

Kafka

Average CPU Instructions



© Prof. Dr. H. Krcmar

Technische Universität München

© Prof. Dr. H. Krcmar11

Conclusion

✓ Dynamically applicable (but JVM symbol translation requires startup parameter)

✓ No source-code knowledge required (task dependency cannot be reverse-

engineered )

✓ Small performance overhead during monitoring (when samplingrate <= 999 Hz)

✓ Broad support of different SPEs (eBPF part of Linux Kernel)

✓ Extensive insights into the actual resource consumption of SPE and SPA

o Major operations are visible but low performance operations might be neglected

(e.g. Filter operation)

o Sampling induces high disk utilization after monitoring for dumping the stacktrace

(spare ressources in production scenarios necessary)



© Prof. Dr. H. Krcmar

Technische Universität München

© Prof. Dr. H. Krcmar12

Future Work

Yahoo Streaming Benchmark

▪ Fully integrate toolchain into the Yahoo Streaming Benchmark

▪ Benchmark the resource efficiency of contemporary SPS

Performance Prediction

▪ Yielded metrics can be integrated into a model-based performance prediction

approach

▪ Example: Scalability predictions based on the Palladio Component Model 
(Becker, S., et al. 2009)



© Prof. Dr. H. Krcmar

Technische Universität München

© Prof. Dr. H. Krcmar13

References

Becker, S., et al. (2009). "The Palladio component model for model-driven performance prediction." JSS 2009 82(1): 3-22.

Bedini, I.; Sakr, S.; Theeten, B.; Sala, A.; Cogan, P. (2013): Modeling performance of a parallel streaming engine: bridging 

theory and costs. Proceedings of the 4th ACM/SPEC ICPE (pp. 173-184). Prague, Czech Republic: ACM.

Chintapalli, S., et al. (2016). Benchmarking Streaming Computation Engines: Storm, Flink and Spark Streaming. 2016 IEEE 

International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

Gregg, B. (2019). BPF Performance Tools, Addison-Wesley Professional.

Dongen, G. v., et al. (2018). Latency Measurement of Fine-Grained Operations in Benchmarking Distributed Stream 

Processing Frameworks. 2018 IEEE International Congress on Big Data (BigData Congress).

Dongen, G. and D. E. Van den Poel (2020). "Evaluation of Stream Processing Frameworks." IEEE Transactions on Parallel 

and Distributed Systems.

KernelNewbies (2014). "Linux 3.18 Release Notes." Retrieved 01.09.2020, 2020, from 

https://kernelnewbies.org/Linux_3.18#bpf.28.29_syscall_for_eBFP_virtual_machine_programs.

Stonebraker, M., et al. (2005). "The 8 requirements of real-time stream processing." SIGMOD Record 2005 34(4): 42-47.

Xhafa, F., et al. (2020). "Evaluation of IoT stream processing at edge computing layer for semantic data enrichment." 

Future Generation Computer Systems 105: 730-736.



© Prof. Dr. H. Krcmar

Technische Universität München

© Prof. Dr. H. Krcmar14

Thank you for your attention!

Questions?

mail: johannes.rank@tum.de


