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Idea: Highlight memory churn hotspots 

and provide information on objects that 

generate the most garbage.
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MEMORY CHURN

Time

Memory

High GC frequency
Allocation of many 

short-lived objects
 Minor GCs are quick 

BUT:

 Stop-the-world event

 Allocations cost time 

too!

How can we save on allocations and GCs?

Find out which objects survive only few 

GCs and where they are allocated!
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REASONS FOR MEMORY CHURN

Allocations in heavily executed loops

Boxed primitives
(e.g., ArrayList<Integer>)

Streams (multiple map operations, late 

filter operations, etc.)

Inefficient database accesses
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SHORT-LIVED OBJECTS OVERVIEW

Which types and 

allocation sites are 

interesting for reducing 
object allocations?

Do we perform many

GCs?

What triggers them?

1/3 of all died 

objects are of 

a single type
Investigate!
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OBJECT CLASSIFICATION

Split heap objects by criterion, e.g., 

Type

Split each group by 

another criterion,

e.g., Allocation Site

Animal Person

X() Y() Y() Z()

Various grouping criteria can be used:

Type,

Package,

Allocation Site,

Call Sites,

Allocating Thread,

Data structures,

etc.
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New classifier based on age
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DRILL-DOWN

...garbage over analyzed 

time window

…of which are byte arrays

…of which survived no GC
…of which were allocated 

in ZipCoder.getBytes

…while it was called by 
ZipFile.getEntry

Open IDE and check whether the number 

of allocations can be reduced.
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