
Markus Weninger, Elias Gander, Hanspeter Mössenböck

Johannes Kepler University Linz, Austria

Institute for System Software, Christian Doppler Laboratory MEVSS

SSP 2020

INVESTIGATING HIGH MEMORY CHURN 
VIA OBJECT LIFETIME ANALYSIS TO 
IMPROVE SOFTWARE PERFORMANCE



MOTIVATION: MEMORY ANOMALIES

Memory

Time

2



MOTIVATION: MEMORY ANOMALIES

Memory

Time

3



MOTIVATION: MEMORY ANOMALIES

Memory

Time

4



MOTIVATION: MEMORY ANOMALIES

Memory

Time

Memory churn

5



MOTIVATION: MEMORY ANOMALIES

Memory

Time

Memory churn

OutOfMemoryError
Heap 

size limit

6



MOTIVATION: MEMORY ANOMALIES

Memory

Time

Memory churn Memory leak

OutOfMemoryError
Heap 

size limit

7



MOTIVATION: MEMORY ANOMALIES

Memory

Time

Memory churn Memory leak

OutOfMemoryError
Heap 

size limit

Investigate!

8



MOTIVATION: MEMORY ANOMALIES

Memory

Time

Memory churn Memory leak

OutOfMemoryError
Heap 

size limit

Investigate!How?

9



MOTIVATION: MEMORY ANOMALIES

Memory

Time

OutOfMemoryError
Heap 

size limit

10



MOTIVATION: MEMORY ANOMALIES

Memory

Time

OutOfMemoryError
Heap 

size limit

11



MOTIVATION: MEMORY ANOMALIES

Memory

Time

OutOfMemoryError
Heap 

size limit

12



MOTIVATION: MEMORY ANOMALIES

Memory

Time

OutOfMemoryError
Heap 

size limit

Idea: Highlight memory churn hotspots 

and provide information on objects that 

generate the most garbage.

13



MEMORY CHURN

Time

Memory
Allocation of many 

short-lived objects

14



MEMORY CHURN

Time

Memory

High GC frequency
Allocation of many 

short-lived objects

15



MEMORY CHURN

Time

Memory

High GC frequency
Allocation of many 

short-lived objects
 Minor GCs are quick 

BUT:

16



MEMORY CHURN

Time

Memory

High GC frequency
Allocation of many 

short-lived objects
 Minor GCs are quick 

BUT:

 Stop-the-world event

17



MEMORY CHURN

Time

Memory

High GC frequency
Allocation of many 

short-lived objects
 Minor GCs are quick 

BUT:

 Stop-the-world event

 Allocations cost time 

too!

18



MEMORY CHURN

Time

Memory

High GC frequency
Allocation of many 

short-lived objects
 Minor GCs are quick 

BUT:

 Stop-the-world event

 Allocations cost time 

too!

How can we save on allocations and GCs?

19



MEMORY CHURN

Time

Memory

High GC frequency
Allocation of many 

short-lived objects
 Minor GCs are quick 

BUT:

 Stop-the-world event

 Allocations cost time 

too!

How can we save on allocations and GCs?

Find out which objects survive only few 

GCs and where they are allocated!
20



REASONS FOR MEMORY CHURN

21



REASONS FOR MEMORY CHURN

Allocations in heavily executed loops

22



REASONS FOR MEMORY CHURN

Allocations in heavily executed loops

Boxed primitives
(e.g., ArrayList<Integer>)

23



REASONS FOR MEMORY CHURN

Allocations in heavily executed loops

Boxed primitives
(e.g., ArrayList<Integer>)

Streams (multiple map operations, late 

filter operations, etc.)

24



REASONS FOR MEMORY CHURN

Allocations in heavily executed loops

Boxed primitives
(e.g., ArrayList<Integer>)

Streams (multiple map operations, late 

filter operations, etc.)

Inefficient database accesses

25



DATA: MEMORY TRACES
VM

Application
t

M
u
ta

to
r 

p
h
a

s
e

M
u
t.
 p

h
a
s
e

G
C

 p
h

a
s
e

Lengauer, Bitto, Mössenböck: Accurate and Efficient Object Tracing for Java Applications, ICPE 2015

Lengauer et al.: Efficient Memory Traces with Full Pointer Information, PPPJ 2016

26



DATA: MEMORY TRACES
VM

Application
t

M
u
ta

to
r 

p
h
a

s
e

M
u
t.
 p

h
a
s
e

G
C

 p
h

a
s
e

new X()

Lengauer, Bitto, Mössenböck: Accurate and Efficient Object Tracing for Java Applications, ICPE 2015

Lengauer et al.: Efficient Memory Traces with Full Pointer Information, PPPJ 2016

27



DATA: MEMORY TRACES
VM

Application
t

M
u
ta

to
r 

p
h
a

s
e

M
u
t.
 p

h
a
s
e

G
C

 p
h

a
s
e

new X()

Lengauer, Bitto, Mössenböck: Accurate and Efficient Object Tracing for Java Applications, ICPE 2015

Lengauer et al.: Efficient Memory Traces with Full Pointer Information, PPPJ 2016

28



DATA: MEMORY TRACES
VM

Application
t

M
u
ta

to
r 

p
h
a

s
e

M
u
t.
 p

h
a
s
e

G
C

 p
h

a
s
e

new X()

Trace

file

Lengauer, Bitto, Mössenböck: Accurate and Efficient Object Tracing for Java Applications, ICPE 2015

Lengauer et al.: Efficient Memory Traces with Full Pointer Information, PPPJ 2016

29



DATA: MEMORY TRACES
VM

Application
t

M
u
ta

to
r 

p
h
a

s
e

M
u
t.
 p

h
a
s
e

G
C

 p
h

a
s
e

new X()

new Y()

Trace

file

Lengauer, Bitto, Mössenböck: Accurate and Efficient Object Tracing for Java Applications, ICPE 2015

Lengauer et al.: Efficient Memory Traces with Full Pointer Information, PPPJ 2016

30



DATA: MEMORY TRACES
VM

Application
t

M
u
ta

to
r 

p
h
a

s
e

M
u
t.
 p

h
a
s
e

G
C

 p
h

a
s
e

new X()

new Y()

new Z()

new Y()

move

move

move

new Y()

new Z()

Trace

file

Lengauer, Bitto, Mössenböck: Accurate and Efficient Object Tracing for Java Applications, ICPE 2015

Lengauer et al.: Efficient Memory Traces with Full Pointer Information, PPPJ 2016

31



DATA: MEMORY TRACES
VM

Application
t

M
u
ta

to
r 

p
h
a

s
e

M
u
t.
 p

h
a
s
e

G
C

 p
h

a
s
e

new X()

new Y()

new Z()

new Y()

move

move

move

new Y()

new Z()

Trace

file

AntTracks Analyzer

Memory anomaly

detection and analysis

Lengauer, Bitto, Mössenböck: Accurate and Efficient Object Tracing for Java Applications, ICPE 2015

Lengauer et al.: Efficient Memory Traces with Full Pointer Information, PPPJ 2016

32



DATA: MEMORY TRACES
VM

Application
t

M
u
ta

to
r 

p
h
a

s
e

M
u
t.
 p

h
a
s
e

G
C

 p
h

a
s
e

new X()

new Y()

new Z()

new Y()

move

move

move

new Y()

new Z()

Trace

file

AntTracks Analyzer

Memory anomaly

detection and analysis

Lengauer, Bitto, Mössenböck: Accurate and Efficient Object Tracing for Java Applications, ICPE 2015

Lengauer et al.: Efficient Memory Traces with Full Pointer Information, PPPJ 2016

33



DATA: MEMORY TRACES
VM

Application
t

M
u
ta

to
r 

p
h
a

s
e

M
u
t.
 p

h
a
s
e

G
C

 p
h

a
s
e

new X()

new Y()

new Z()

new Y()

move

move

move

new Y()

new Z()

Trace

file

AntTracks Analyzer

Memory anomaly

detection and analysis

Heap 1

Lengauer, Bitto, Mössenböck: Accurate and Efficient Object Tracing for Java Applications, ICPE 2015

Lengauer et al.: Efficient Memory Traces with Full Pointer Information, PPPJ 2016

34



DATA: MEMORY TRACES
VM

Application
t

M
u
ta

to
r 

p
h
a

s
e

M
u
t.
 p

h
a
s
e

G
C

 p
h

a
s
e

new X()

new Y()

new Z()

new Y()

move

move

move

new Y()

new Z()

Trace

file

AntTracks Analyzer

Memory anomaly

detection and analysis

Heap 1 Heap 2

Lengauer, Bitto, Mössenböck: Accurate and Efficient Object Tracing for Java Applications, ICPE 2015

Lengauer et al.: Efficient Memory Traces with Full Pointer Information, PPPJ 2016

35



DATA: MEMORY TRACES
VM

Application
t

M
u
ta

to
r 

p
h
a

s
e

M
u
t.
 p

h
a
s
e

G
C

 p
h

a
s
e

new X()

new Y()

new Z()

new Y()

move

move

move

new Y()

new Z()

Trace

file

AntTracks Analyzer

Memory anomaly

detection and analysis

Heap 1 Heap 2 Heap n
…

Lengauer, Bitto, Mössenböck: Accurate and Efficient Object Tracing for Java Applications, ICPE 2015

Lengauer et al.: Efficient Memory Traces with Full Pointer Information, PPPJ 2016

36



TIME-WINDOW DETECTION

Memory

Time

37



TIME-WINDOW DETECTION

Memory

Time

Find time window with

most garbage per second

38



TIME-WINDOW DETECTION

Memory

Time

39



TIME-WINDOW DETECTION

Memory

Time

40



TIME-WINDOW DETECTION

Memory

Time

41



TIME-WINDOW DETECTION

Memory

Time

42



TIME-WINDOW DETECTION

Memory

Time

43



TIME-WINDOW DETECTION

Memory

Time

44



TIME-WINDOW DETECTION

Memory

Time

45



TIME-WINDOW DETECTION

Memory

Time

46



TIME-WINDOW DETECTION

Memory

Time

47



TIME-WINDOW DETECTION

Memory

Time

48



TIME-WINDOW DETECTION

Memory

Time

49



TIME-WINDOW DETECTION

Memory

Time

50



TIME-WINDOW DETECTION

Memory

Time

51



TIME-WINDOW DETECTION

Memory

TimeHotspot

52



SHORT-LIVED OBJECTS OVERVIEW

53



SHORT-LIVED OBJECTS OVERVIEW

Which types and 

allocation sites are 

interesting for reducing 
object allocations?

54



SHORT-LIVED OBJECTS OVERVIEW

Which types and 

allocation sites are 

interesting for reducing 
object allocations?

Do we perform many

GCs?

What triggers them?

55



SHORT-LIVED OBJECTS OVERVIEW

Which types and 

allocation sites are 

interesting for reducing 
object allocations?

Do we perform many

GCs?

What triggers them?

56



SHORT-LIVED OBJECTS OVERVIEW

Which types and 

allocation sites are 

interesting for reducing 
object allocations?

Do we perform many

GCs?

What triggers them?

1/3 of all died 

objects are of 

a single type

57



SHORT-LIVED OBJECTS OVERVIEW

Which types and 

allocation sites are 

interesting for reducing 
object allocations?

Do we perform many

GCs?

What triggers them?

1/3 of all died 

objects are of 

a single type
Investigate!

58



OBJECT CLASSIFICATION

59



OBJECT CLASSIFICATION

60



OBJECT CLASSIFICATION

Split heap objects by criterion, e.g., 

Type

Animal Person

61



OBJECT CLASSIFICATION

Split heap objects by criterion, e.g., 

Type

Split each group by 

another criterion,

e.g., Allocation Site

Animal Person

X() Y() Y() Z()

62



OBJECT CLASSIFICATION

Split heap objects by criterion, e.g., 

Type

Split each group by 

another criterion,

e.g., Allocation Site

Animal Person

X() Y() Y() Z()

63



OBJECT CLASSIFICATION

Split heap objects by criterion, e.g., 

Type

Split each group by 

another criterion,

e.g., Allocation Site

Animal Person

X() Y() Y() Z()

64



OBJECT CLASSIFICATION

Split heap objects by criterion, e.g., 

Type

Split each group by 

another criterion,

e.g., Allocation Site

Animal Person

X() Y() Y() Z()

65



OBJECT CLASSIFICATION

Split heap objects by criterion, e.g., 

Type

Split each group by 

another criterion,

e.g., Allocation Site

Animal Person

X() Y() Y() Z()

Various grouping criteria can be used:

Type,

Package,

Allocation Site,

Call Sites,

Allocating Thread,

Data structures,

etc.

66



OBJECT LIFETIME

67



OBJECT LIFETIME

68



OBJECT LIFETIME

69



OBJECT LIFETIME

70



OBJECT LIFETIME

71



OBJECT LIFETIME

72



OBJECT LIFETIME

73



OBJECT LIFETIME

Age:

74



OBJECT LIFETIME

Age: 1 0 0

75



OBJECT LIFETIME

Age: 1 0 0 12

76



OBJECT LIFETIME

Age: 1 0 0 12

New classifier based on age

77



DRILL-DOWN

78



DRILL-DOWN

79



DRILL-DOWN

80



DRILL-DOWN

81



DRILL-DOWN

82



DRILL-DOWN

...garbage over analyzed 

time window

83



DRILL-DOWN

...garbage over analyzed 

time window

…of which are byte arrays

84



DRILL-DOWN

...garbage over analyzed 

time window

…of which are byte arrays

…of which survived no GC

85



DRILL-DOWN

...garbage over analyzed 

time window

…of which are byte arrays

…of which survived no GC
…of which were allocated 

in ZipCoder.getBytes

86



DRILL-DOWN

...garbage over analyzed 

time window

…of which are byte arrays

…of which survived no GC
…of which were allocated 

in ZipCoder.getBytes

…while it was called by 
ZipFile.getEntry

87



DRILL-DOWN

...garbage over analyzed 

time window

…of which are byte arrays

…of which survived no GC
…of which were allocated 

in ZipCoder.getBytes

…while it was called by 
ZipFile.getEntry

88



DRILL-DOWN

...garbage over analyzed 

time window

…of which are byte arrays

…of which survived no GC
…of which were allocated 

in ZipCoder.getBytes

…while it was called by 
ZipFile.getEntry

Open IDE and check whether the number 

of allocations can be reduced.
89



FUTURE WORK

90



FUTURE WORK

 Use lifetime information in other analyses

91



FUTURE WORK

 Use lifetime information in other analyses

 Guidance

92



FUTURE WORK

 Use lifetime information in other analyses

 Guidance

 Visualization

93



TAKE-AWAYS

94



TAKE-AWAYS

Problem

High memory 

churn

Freq. allocations

Freq. garbage 

collections

95



TAKE-AWAYS

Problem
Memory Churn 

Hotspot

High memory 

churn

Freq. allocations

Freq. garbage 

collections

Detect time 

window with 

highest garbage 

per second

96



TAKE-AWAYS

Problem
Memory Churn 

Hotspot
Object Lifetime

High memory 

churn

Freq. allocations

Freq. garbage 

collections

Detect time 

window with 

highest garbage 

per second

Birth time

Free time

Age

New grouping 

classifier

97



TAKE-AWAYS

Problem
Memory Churn 

Hotspot
Object Lifetime Inspection

High memory 

churn

Freq. allocations

Freq. garbage 

collections

Detect time 

window with 

highest garbage 

per second

Birth time

Free time

Age

New grouping 

classifier

Which objects die 

without 

survinging a 

single GC?

Type

Allocation Site

98



TAKE-AWAYS

Problem
Memory Churn 

Hotspot
Object Lifetime Inspection

High memory 

churn

Freq. allocations

Freq. garbage 

collections

Detect time 

window with 

highest garbage 

per second

Birth time

Free time

Age

New grouping 

classifier

Which objects die 

without 

survinging a 

single GC?

Type

Allocation Site

Markus Weninger

Johannes Kepler University

Linz, Austria

markus.weninger@jku.at

99


