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Motivation: Performance is important!

> Case example: Stress testing Microsoft's Hyper-V hypervisor

-- Microsoft
=

> Repeated addition and removal of a virtual processor Hyper-v

root partition guest partition

> Unproblematic at lower execution speed

> Crash likelihood increases with execution speed
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Motivation: Branches are critical

> Related work: How can the cost of branch executions be reduced [1, 2, 3]

> Here: We can avoid branches — what is the performance gain?
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Background: Hyper-V

> Type I-hypervisor

> Virtual machines are called partitions

> Microkernel-architecture: outsouring of functionality into a
privileged virtual machine (the ,root partition)

| |I’OO'[ partltlj | 1 tt partltlon

> Partitions can request hypervisor services using hypercalls
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Background: Hypercalls
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> Examples:

®» Input Parameter Header

0 Partitionld (8 bytes)

 HvCreatePartition
) HvCreateVp (Vlrtual processor) 8 VpIndex (4 bytes) TargetVtl (1 RsvdZ (3 bytes)

* HvNotifyLongSpinWait byte)

Hypercall

Call code, parameters

Result val, output vals
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Background: Hypercall Injector

Windows kernel module (proposed at SSP 2019 [4])

Can inject arbitrary hypercalls into Hyper-V

Logging for these values is possible:

* Result value
* Output values
« Timesteps

« Execution time
Logging is optional
* Memory constraints

 Execution overhead
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Background: Branching

> Processors try to parallelize instruction execution as much as possible

> Pipelining: 8 9
[5]
A |
1=
loc_FFFFF8@659C34706A:
cmp ecx, 1
— ja short loc_FFFFF80659C34735
11
> Parallel execution (superscalar archigz= . T .
movsxd rax, ecx
> OUt-Of-Order exeCUtiOn lea rcx, dword FFFFF8065A896C40| (loc_FFFFF80659C34735:
shl rax, 8 mov rod, 5
add rax, rcx jmp short loc_FFFFF88659C34723
mov [rdx], rax sub_FFFFF8@659C346EC endp
| .

> Branches: Next instruction unclear, speculative execution

UNI Measuring the Performance Impact of Branching Instructions

Lukas Beierlieb



Research Question

> Goal is highest throughput for stress testing

> No values will be logged

What is the cost of checking if something should be logged,
If nothing Is logged?

> Certainly branchless will be faster

> Branches always take the same branch, so by how much?
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Execution Loop with Branches
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// prepare
while (/* more to execute */) {
switch (/* type */) {
case TYPE WAIT:
// sleep and maybe log times, details left out
break;
case TYPE CALL:
// prepare memory for call
if (/* timesteps or execution time requested */)
// take start time
// 1issue hypercall
if (/* timesteps or execution time requested */)
// take end time
if (/* timesteps requested */)
// store time stamps
if (/* execution time requested */)
// calculate execution time and store
if (/* result value requested */)
// store result value
if (/* output values requested /*)
// store output memory page
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Execution Loop without branches
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// prepare
while (/* more to execute */) {
switch (/* type */) {
case TYPE WAIT:
// sleep and maybe log times, details left out
break;
case TYPE CALL:
// prepare memory for call

// 1issue hypercall
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The Disadvantage...

> Choosing correct loop beforehand based on request log values

if (flags received-»memory &R !flags received-sexectime && !Tlags received->timestamps && !Tlags received-»result & !flags received-»output)
status = perform memory(input file, output file);

else if (flags_received-»memory && !Tlags _received-rexectime B& !Tlags received-»timestamps && flags_received-»result && !flags received-»output)
status = perform_memory log result{input_file, output_file);

else if (flags received-»memory && !flags received-rexectime B8R !flags received->»timestamps && !flags received-»result &R flags received-»output)
status = perform_memory_log output{input_file, output_file);

else if (flags_received-»memory && !Tlags_received-rexectime B& !Tlags received-»timestamps && flags received-»result E& flags_received-»output)
status = perform_memory log result_output{input_file, output_file);

else if (flags received-»memory && flags received-rexectime 8% !flags received-»timestamps &% !flags received-»result && !flags received-»output)
status = perform_memory_log exectime(input_file, output_file);

else if (flags_received-»memory && flags received-rexectime &R !Tlags received->timestamps && flags received-»result && !flags_received-»output)

status = perform_memory_log exectime_result(input_file, output_file);

> Around 40 implementations of the essentially the same code...
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Measurement Methodology
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Windows 10

> Test campaign: 50 million invalid hypercall

> EXxecution time is measured; can be used to calculate throughput

> Execution of 35 consecutive runs

35 times
|

[

Idle

50 million calls

50 million calls

50 million calls

50 million calls
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Results
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—— branch_debug

—— branch_release
—— nobranch_debug

—— nobranch_release
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Further Measurements
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branch_debug
branch_release
nobranch_debug

nobranch_release
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branch_debug

—— branch_release

— nobranch_debug
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Summary
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Testing tools require high performance for stress testing

Idea: try to minimize overhead by reducing branching instructions (used for logging)

Effects are significant

Compromise:

Use dedicated branchless implementation for high throughput configurations (no logging, only
execution times)

Use branch-based implementation to cover all other cases

Performance gains where required -
i Microsoft
L . Hyper-v
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Small penalty for maintainability
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The End
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Thank you for your attention!
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