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Motivation: Performance is important!

 Case example: Stress testing Microsoft‘s Hyper-V hypervisor

 Repeated addition and removal of a virtual processor

 Unproblematic at lower execution speed

 Crash likelihood increases with execution speed
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Motivation: Branches are critical

 Related work: How can the cost of branch executions be reduced [1, 2, 3]

 Here: We can avoid branches – what is the performance gain?
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Background: Hyper-V

 Type I-hypervisor

 Virtual machines are called partitions

 Microkernel-architecture: outsouring of functionality into a 

privileged virtual machine (the „root partition“)

 Partitions can request hypervisor services using hypercalls

Hardware

Hyper-V

root partition guest partition

Windows Kernel

Userspace

OS Kernel

Userspace



Lukas Beierlieb
5

Measuring the Performance Impact of Branching Instructions

Background: Hypercalls

 Examples:

• HvCreatePartition

• HvCreateVp (virtual processor)

• HvNotifyLongSpinWait

Hyper-VPartition

Call code, parameters
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Hypercall
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Background: Hypercall Injector

 Windows kernel module (proposed at SSP 2019 [4])

 Can inject arbitrary hypercalls into Hyper-V

 Logging for these values is possible:

• Result value

• Output values

• Timesteps

• Execution time

 Logging is optional

• Memory constraints

• Execution overhead
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Background: Branching

 Processors try to parallelize instruction execution as much as possible

 Pipelining:

 Parallel execution (superscalar architecture)

 Out-of-order execution

 Branches: Next instruction unclear, speculative execution

[5]
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Research Question

 Goal is highest throughput for stress testing

 No values will be logged

What is the cost of checking if something should be logged, 

if nothing is logged?

 Certainly branchless will be faster

 Branches always take the same branch, so by how much?
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Execution Loop with Branches
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Execution Loop without branches
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The Disadvantage…

 Choosing correct loop beforehand based on request log values

 Around 40 implementations of the essentially the same code…
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Measurement Methodology

 Test campaign: 50 million invalid hypercall

 Execution time is measured; can be used to calculate throughput

 Execution of 35 consecutive runs

Lenovo Thinkpad P1

Hyper-V

Windows 10

Idle 50 million calls 50 million calls 50 million calls 50 million calls…….

35 times
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Results
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Further Measurements
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Additional Data

branch_dbg branch_rel nobranch_dbg nobranch_rel
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Summary

 Testing tools require high performance for stress testing

 Idea: try to minimize overhead by reducing branching instructions (used for logging)

 Effects are significant

 Compromise:

• Use dedicated branchless implementation for high throughput configurations (no logging, only

execution times)

• Use branch-based implementation to cover all other cases

• Performance gains where required

• Small penalty for maintainability
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The End

Thank you for your attention!


