Julius-Maximilians-
UNIVERSITAT
I WURZBURG L escggrégrec 2

Measuring the Performance Impact of
Branching Instructions

SSP 2021, Leipzig

Lukas Beierlieb, Lukas Ifflander, Aleksandar Milenkoski,

Thomas Prantl, Samuel Kounev

09.11.2021

https://se.informatik.uni-wuerzburg.de

Motivation: Performance is important!

> Case example: Stress testing Microsoft's Hyper-V hypervisor

-- Microsoft
=

> Repeated addition and removal of a virtual processor Hyper-v

root partition guest partition

> Unproblematic at lower execution speed

> Crash likelihood increases with execution speed

UNI Measuring the Performance Impact of Branching Instructions

Lukas Beierlieb

Motivation: Branches are critical

> Related work: How can the cost of branch executions be reduced [1, 2, 3]

> Here: We can avoid branches — what is the performance gain?

UNI Measuring the Performance Impact of Branching Instructions

Lukas Beierlieb

Background: Hyper-V

> Type I-hypervisor

> Virtual machines are called partitions

> Microkernel-architecture: outsouring of functionality into a
privileged virtual machine (the ,root partition)

| |I’OO'[partltlj | 1 tt partltlon

> Partitions can request hypervisor services using hypercalls

UNI Measuring the Performance Impact of Branching Instructions

Lukas Beierlieb

Background: Hypercalls

UNI

> Examples:

®» Input Parameter Header

0 Partitionld (8 bytes)

 HvCreatePartition
) HvCreateVp (Vlrtual processor) 8 VpIndex (4 bytes) TargetVtl (1 RsvdZ (3 bytes)

* HvNotifyLongSpinWait byte)

Hypercall

Call code, parameters

Result val, output vals

Measuring the Performance Impact of Branching Instructions

Lukas Beierlieb

UNI

>

>

>

>

Background: Hypercall Injector

Windows kernel module (proposed at SSP 2019 [4])

Can inject arbitrary hypercalls into Hyper-V

Logging for these values is possible:

* Result value
* Output values
« Timesteps

« Execution time
Logging is optional
* Memory constraints

 Execution overhead

Measuring the Performance Impact of Branching Instructions

Lukas Beierlieb

Background: Branching

> Processors try to parallelize instruction execution as much as possible

> Pipelining: 8 9
[5]
A |
1=
loc_FFFFF8@659C34706A:
cmp ecx, 1
— ja short loc_FFFFF80659C34735
11
> Parallel execution (superscalar archigz= . T .
movsxd rax, ecx
> OUt-Of-Order exeCUtiOn lea rcx, dword FFFFF8065A896C40| (loc_FFFFF80659C34735:
shl rax, 8 mov rod, 5
add rax, rcx jmp short loc_FFFFF88659C34723
mov [rdx], rax sub_FFFFF8@659C346EC endp
| .

> Branches: Next instruction unclear, speculative execution

UNI Measuring the Performance Impact of Branching Instructions

Lukas Beierlieb

Research Question

> Goal is highest throughput for stress testing

> No values will be logged

What is the cost of checking if something should be logged,
If nothing Is logged?

> Certainly branchless will be faster

> Branches always take the same branch, so by how much?

UNI Measuring the Performance Impact of Branching Instructions

Lukas Beierlieb

Execution Loop with Branches

UNI

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// prepare
while (/* more to execute */) {
switch (/* type */) {
case TYPE WAIT:
// sleep and maybe log times, details left out
break;
case TYPE CALL:
// prepare memory for call
if (/* timesteps or execution time requested */)
// take start time
// 1issue hypercall
if (/* timesteps or execution time requested */)
// take end time
if (/* timesteps requested */)
// store time stamps
if (/* execution time requested */)
// calculate execution time and store
if (/* result value requested */)
// store result value
if (/* output values requested /*)
// store output memory page

Measuring the Performance Impact of Branching Instructions

Lukas Beierlieb

Execution Loop without branches

UNI

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// prepare
while (/* more to execute */) {
switch (/* type */) {
case TYPE WAIT:
// sleep and maybe log times, details left out
break;
case TYPE CALL:
// prepare memory for call

// 1issue hypercall

Measuring the Performance Impact of Branching Instructions

Lukas Beierlieb

10

The Disadvantage...

> Choosing correct loop beforehand based on request log values

if (flags received-»memory &R !flags received-sexectime && !Tlags received->timestamps && !Tlags received-»result & !flags received-»output)
status = perform memory(input file, output file);

else if (flags_received-»memory && !Tlags _received-rexectime B& !Tlags received-»timestamps && flags_received-»result && !flags received-»output)
status = perform_memory log result{input_file, output_file);

else if (flags received-»memory && !flags received-rexectime B8R !flags received->»timestamps && !flags received-»result &R flags received-»output)
status = perform_memory_log output{input_file, output_file);

else if (flags_received-»memory && !Tlags_received-rexectime B& !Tlags received-»timestamps && flags received-»result E& flags_received-»output)
status = perform_memory log result_output{input_file, output_file);

else if (flags received-»memory && flags received-rexectime 8% !flags received-»timestamps &% !flags received-»result && !flags received-»output)
status = perform_memory_log exectime(input_file, output_file);

else if (flags_received-»memory && flags received-rexectime &R !Tlags received->timestamps && flags received-»result && !flags_received-»output)

status = perform_memory_log exectime_result(input_file, output_file);

> Around 40 implementations of the essentially the same code...

UNI Measuring the Performance Impact of Branching Instructions

Lukas Beierlieb

11

Measurement Methodology

UNI

Windows 10

> Test campaign: 50 million invalid hypercall

> EXxecution time is measured; can be used to calculate throughput

> Execution of 35 consecutive runs

35 times
|

[

Idle

50 million calls

50 million calls

50 million calls

50 million calls

Measuring the Performance Impact of Branching Instructions

Lukas Beierlieb

12

Results

UNI

20 -
S
15 - — J\' —
’_—W

.
Q
E 10-
O
Q
>
(]

5-

0-

0 10 20 30

iteration

Measuring the Performance Impact of Branching Instructions

Lukas Beierlieb

Configuration

—— branch_debug

—— branch_release
—— nobranch_debug

—— nobranch_release

13

Further Measurements

UNI

20 -

15 - Y ’_,7

exectime [s]
=
1

0 10 20 30
iteration

Measuring the Performance Impact of Branching Instructions

Lukas Beierlieb

Configuration

branch_debug
branch_release
nobranch_debug

nobranch_release

14

90-

[
o
'

CPU temp [°C]
3

[=2]
o
[

50-

4000~

CPU clock [MHz]

1000 -

3000 -

2000 -

=

branch_dbg\lu“ branch_rel \‘\—’nobranchdbg\J nobranch_rel\\v

1000 2000

|

1000 2000
Time [s]

Additional Data

20~

exectime [s]
=]

3001

[T

0 10 20 30
iteration

ﬂ

3000,
\pact of Branching Instructions

Lukas Beierlieb

Configuration
branch_debug

—— branch_release

— nobranch_debug

nobranch_release

15

Summary

UNI

>

>

>

>

Testing tools require high performance for stress testing

Idea: try to minimize overhead by reducing branching instructions (used for logging)

Effects are significant

Compromise:

Use dedicated branchless implementation for high throughput configurations (no logging, only
execution times)

Use branch-based implementation to cover all other cases

Performance gains where required -
i Microsoft
L . Hyper-v

16

Small penalty for maintainability

Measuring the Performance Impact of Branching Instructions

Lukas Beierlieb

UNI

References

[1] Hwu, W. et al.: Comparing software and hardware schemes for reducing the cost of
branches

[2] McFarling, S. et al.: Reducing the cost of branches

[3] Kim, H. et al.. Vpc prediction: reducing thecost of indirect branches via hardware-based
dynamic devirtualization

[4] Beierlieb, L. et al.: Towards Testing the Performance Influence of Hypervisor Hypercall
Interface Behavior

[5] https://www.intel.com/content/www/us/en/developer/tools/oneapi/tech-articles-how-
to/overview.html#gs.fw8np8

Measuring the Performance Impact of Branching Instructions 17

Lukas Beierlieb

https://www.intel.com/content/www/us/en/developer/tools/oneapi/tech-articles-how-to/overview.html#gs.fw8np8

The End

UNI

Thank you for your attention!

Measuring the Performance Impact of Branching Instructions

Lukas Beierlieb

18

