
https://se.informatik.uni-wuerzburg.de

SSP 2021, Leipzig

Measuring the Performance Impact of

Branching Instructions

Lukas Beierlieb, Lukas Iffländer, Aleksandar Milenkoski,

Thomas Prantl, Samuel Kounev

09.11.2021



Lukas Beierlieb
2

Measuring the Performance Impact of Branching Instructions

Motivation: Performance is important!

 Case example: Stress testing Microsoft‘s Hyper-V hypervisor

 Repeated addition and removal of a virtual processor

 Unproblematic at lower execution speed

 Crash likelihood increases with execution speed

Hardware

Hyper-V

root partition

VP VP VP VP VP VP VP

guest partition



Lukas Beierlieb
3

Measuring the Performance Impact of Branching Instructions

Motivation: Branches are critical

 Related work: How can the cost of branch executions be reduced [1, 2, 3]

 Here: We can avoid branches – what is the performance gain?



Lukas Beierlieb
4

Measuring the Performance Impact of Branching Instructions

Background: Hyper-V

 Type I-hypervisor

 Virtual machines are called partitions

 Microkernel-architecture: outsouring of functionality into a 

privileged virtual machine (the „root partition“)

 Partitions can request hypervisor services using hypercalls

Hardware

Hyper-V

root partition guest partition

Windows Kernel

Userspace

OS Kernel

Userspace



Lukas Beierlieb
5

Measuring the Performance Impact of Branching Instructions

Background: Hypercalls

 Examples:

• HvCreatePartition

• HvCreateVp (virtual processor)

• HvNotifyLongSpinWait

Hyper-VPartition

Call code, parameters

Result val, output vals

Hypercall



Lukas Beierlieb
6

Measuring the Performance Impact of Branching Instructions

Background: Hypercall Injector

 Windows kernel module (proposed at SSP 2019 [4])

 Can inject arbitrary hypercalls into Hyper-V

 Logging for these values is possible:

• Result value

• Output values

• Timesteps

• Execution time

 Logging is optional

• Memory constraints

• Execution overhead



Lukas Beierlieb
7

Measuring the Performance Impact of Branching Instructions

Background: Branching

 Processors try to parallelize instruction execution as much as possible

 Pipelining:

 Parallel execution (superscalar architecture)

 Out-of-order execution

 Branches: Next instruction unclear, speculative execution

[5]



Lukas Beierlieb
8

Measuring the Performance Impact of Branching Instructions

Research Question

 Goal is highest throughput for stress testing

 No values will be logged

What is the cost of checking if something should be logged, 

if nothing is logged?

 Certainly branchless will be faster

 Branches always take the same branch, so by how much?



Lukas Beierlieb
9

Measuring the Performance Impact of Branching Instructions

Execution Loop with Branches



Lukas Beierlieb
10

Measuring the Performance Impact of Branching Instructions

Execution Loop without branches



Lukas Beierlieb
11

Measuring the Performance Impact of Branching Instructions

The Disadvantage…

 Choosing correct loop beforehand based on request log values

 Around 40 implementations of the essentially the same code…



Lukas Beierlieb
12

Measuring the Performance Impact of Branching Instructions

Measurement Methodology

 Test campaign: 50 million invalid hypercall

 Execution time is measured; can be used to calculate throughput

 Execution of 35 consecutive runs

Lenovo Thinkpad P1

Hyper-V

Windows 10

Idle 50 million calls 50 million calls 50 million calls 50 million calls…….

35 times



Lukas Beierlieb
13

Measuring the Performance Impact of Branching Instructions

Results



Lukas Beierlieb
14

Measuring the Performance Impact of Branching Instructions

Further Measurements



Lukas Beierlieb
15

Measuring the Performance Impact of Branching Instructions

Additional Data

branch_dbg branch_rel nobranch_dbg nobranch_rel



Lukas Beierlieb
16

Measuring the Performance Impact of Branching Instructions

Summary

 Testing tools require high performance for stress testing

 Idea: try to minimize overhead by reducing branching instructions (used for logging)

 Effects are significant

 Compromise:

• Use dedicated branchless implementation for high throughput configurations (no logging, only

execution times)

• Use branch-based implementation to cover all other cases

• Performance gains where required

• Small penalty for maintainability



Lukas Beierlieb
17

Measuring the Performance Impact of Branching Instructions

References

[1] Hwu, W. et al.: Comparing software and hardware schemes for reducing the cost of

branches

[2] McFarling, S. et al.: Reducing the cost of branches

[3] Kim, H. et al.: Vpc prediction: reducing thecost of indirect branches via hardware-based 

dynamic devirtualization

[4] Beierlieb, L. et al.: Towards Testing the Performance Influence of Hypervisor Hypercall

Interface Behavior 

[5] https://www.intel.com/content/www/us/en/developer/tools/oneapi/tech-articles-how-

to/overview.html#gs.fw8np8

https://www.intel.com/content/www/us/en/developer/tools/oneapi/tech-articles-how-to/overview.html#gs.fw8np8


Lukas Beierlieb
18

Measuring the Performance Impact of Branching Instructions

The End

Thank you for your attention!


