Overhead Comparison of OpenTelemetry,
inspectlT and Kieker

David Georg Reichelt! Stefan Kiihne!
Wilhelm Hasselbring?

LUniversitat Leipzig, Universitatsrechenzentrum, Forschung und Entwicklung

2Christian-Albrechts-Universitit zu Kiel, Software Engineering Group

Oth of November 2021

GEFURDERT VOM

* Bundesministerium
& fiir Bildung
und Forschung

Why Overhead Comparison?

m Performance measurement creates overhead
m Instrumentation
m Measurement
m Serialization

= Should be as low as possible
= Replicable measurement provided by MooBench

m Overhead is relevant

m ... for comparison of monitoring tools
= this work

m ... for further reduction of monitoring overhead for continuous
root cause analysis in Peass
= ongoing research

Outline

MooBench

Monitoring Frameworks

Overhead Comparison

Summary

MooBench
90000

MooBench

MooBench
00000

Performance Measurement in JVM

VMs
VM-Start Q
Warmup Repetition
Measurement
Measure) Execute il Measure lterations
Start Workload End
Measurement Repetition
Measurement
Measure Execute | Measure lterations
Start Workload End

MooBench
00000

Performance Measurement in JVM

m Non-deterministic effects influence performance
m Just-in-Time-Compilation
m Garbage collection
m Memory fragmentation
"
m Measurement process
m Warmup iterations
m Measurement iterations
m Repetition inside VMs
m Analysis of values by statistical test, e.g. T-Test

MooBench
0000

MooBench (Measurement Process)

/\fNUMOFLOOPS

Iteration
| Start
1 RECURSION_DEPTH
| monitoredMethod
1
Busy Wait
$METHOD_TIME

VM-Starts /\M’/OTALNUMOFCALLS

m Additional parametrisation by
m SLEEP_TIME (Sleep time between VM starts, so system can
cooldown)

MooBench
00000

MooBench (Variants)

Baseline

[
m Regular instrumentation
m Deactivated monitoring
[

Different monitoring configurations (e.g. different serialization)

MooBench
0000®

Prior Work on MooBench

m Continuous measurement (Waller, Ehmke and Hasselbring,
2015)

m Testing of replicability (Knoche and Eichelberger, 2017;
Knoche and Eichelberger, 2018)

m Effects of multithreading (Waller and Hasselbring, 2015)

Monitoring Frameworks
[JeJe]e]

Monitoring Frameworks

Monitoring Frameworks
0@e00

OpenTelemetry

&
é Telemetry

“Ubiquitous” telemetry = Support of a many languages

Supports variety of frameworks itself

Different exporters (Zipkin, Prometheus, Jaeger)

Instrumentation through javaagent

Configuration through command line, yaml file, ...

Monitoring Frameworks
[e]e] Je]

inspectl T

“Zero-configuration” Java agent for performance collection

Supports variety of frameworks by usage of OpenCensus

Different exporters (Zipkin, Prometheus, Jaeger)

Configuration (through command line, yaml file, ...)
m Scopes define measured methods
m Rules define measurement metrics
m Actions define processing on extracted data

Monitoring Frameworks

oooe

Measurement with MooBench

SUT
| Workload
Kieker OpenTelemetry inspectlT
- Agent Agent Agent
|TCP Receiverl | Prometheus | Zipkin
Hard Disc

Logging

Overhead Comparison
©0000

Overhead Comparison

Overhead Comparison
0®000

m OpenJDK 11.0.11
m Hardware

m For replicability to older data: Raspberry Pi 4
m Current desktop: i7-4770 CPU @ 3.40GHz with 16 GB RAM,
running Ubuntu 20.04

m Workload sizes

m Call tree depth 10 (default) for all configurations
m Exponential growing call tree depth for TCP export

Overhead Comparison
00000

Call Tree Depth 10 (Kieker)

Variant Raspberry Pi i7-4770
95 % ClI o 95 % Cl o
Baseline [1.5;1.5] 0.1 [0.057;0.058] | 0.026
Kieker
Deactivated Probe [4.1;4.1] 7.5 [0.4;0.4] 7.1
DumpWriter [51.9;52.0] 14.6 [8.5;8.5] 12.2
Logging (Text) | [743.3;799.4] | 14315.8 | [103.0;103.3] | 56.4
Logging (Binary) [59.8;87.8] | 7149.4 [3.4;3.4] 15.8
TCP [45.6:45.7] | 14.6 [4.6:47] | 10.4

Tabelle: Measurement Results for Kieker (in ps)

Overhead Comparison
00000

Call Tree Depth 10 (Kieker)

m Also deactivated probe has noticable overhead
m Regular text logging is very inefficient

m Fastest configuration for local processing: Binary Logging

Overhead Comparison
0000

Call Tree Depth 10 (default)

OpenTelemetry
Variant |Deactivated| Zipkin |Prometheus
Probe
Pi 4 Cl |[26.8;26.9] |[53.4;53.6]| [44.4,44.5]
o 20.4 46.7 25.2
i7-4770 CI| [4.9;5.0] | [6.8;6.9] | [6.9;6.9]
o 4.1 8.5 4.9
inspectlT
Pi 4 Cl [9.9;9.9] |[[97.2;97.8]| [32.3;32.4]
o 10.5 149.6 16.6
i7-4770 ClI| [1.3;1.4] |[10.9;11.2] [4.0;4.0]
o 8.2 57.4 4.1

Tabelle: Measurement Results for OpenTelemetry and inspectIT (in us)

Overhead Comparison
0000

Call Tree Depth 10 (default)

m OpenTelemetry has lower overhead for Zipkin trace (spans)
export

m inspectlT has lower overhead for metrics export and
deactivated probe

m Deactivated pobe overheads are significantly higher than in
Kieker

Overhead Comparison
0000®

Growing Call Tree Depth

Overview of Method Execution Durations
140000 T

T T T T T

Baseline —+—

| Kieker (TCP) —¥%— i
120000 inspectIT (Zipkin) ——

OpenTelemetry (Zipkin) —®—

100000

80000

60000

Duration us

40000

20000

0

0 20 40 60 80 100 120 140
Call Tree Depth

Abbildung: Overhead evolution with growing call tree depth

Overhead Comparison
0000®

Growing Call Tree Depth

m Different writer configurations are not comparable
m Kieker currently does not support aggregated metrics export

m Only full trace export to Zipkin / TCP export comparable

Summary
[Jele}

Summary

Summary
0e0

Summary

m Monitoring overhead needs to be as low as possible

m MooBench compares Monitoring overhead of different
frameworks and monitoring configurations

m MooBench was extended to support OpenTelemetry and
inspectlT

m Measurement of traces by OpenTelemetry and inspectIT is
slower than with Kieker

Summary
ooe

Outlook

m Benchmarking with more complex tree structure
m Comparison of overhead for different frameworks, e.g. Jersey

m Comparison of accuracy (How well does root cause analysis
algorithm X perform?)

	MooBench
	Monitoring Frameworks
	Overhead Comparison
	Summary

