
1 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Overhead Comparison of OpenTelemetry,
inspectIT and Kieker

David Georg Reichelt1 Stefan Kühne1

Wilhelm Hasselbring2

1Universität Leipzig, Universitätsrechenzentrum, Forschung und Entwicklung

2Christian-Albrechts-Universität zu Kiel, Software Engineering Group

9th of November 2021

2 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Why Overhead Comparison?

Performance measurement creates overhead
Instrumentation
Measurement
Serialization

⇒ Should be as low as possible
⇒ Replicable measurement provided by MooBench

Overhead is relevant
... for comparison of monitoring tools
⇒ this work
... for further reduction of monitoring overhead for continuous
root cause analysis in Peass
⇒ ongoing research

3 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Outline

1 MooBench

2 Monitoring Frameworks

3 Overhead Comparison

4 Summary

4 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

MooBench

5 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Performance Measurement in JVM

Execute
Workload

Measure
Start

Measure
End

RepetitionWarmup
Measurement

Iterations

Execute
Workload

Measure
Start

Measure
End

RepetitionMeasurement
Measurement

Iterations

VM-Start

VMs

5 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Performance Measurement in JVM

Non-deterministic effects influence performance
Just-in-Time-Compilation
Garbage collection
Memory fragmentation
...

Measurement process
Warmup iterations
Measurement iterations
Repetition inside VMs
Analysis of values by statistical test, e.g. T-Test

6 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

MooBench (Measurement Process)

Start

monitoredMethod

Busy Wait
$METHOD TIME

$RECURSION DEPTH

Iteration

$TOTAL NUM OF CALLSVM-Starts

$NUM OF LOOPS

Additional parametrisation by
SLEEP TIME (Sleep time between VM starts, so system can
cooldown)

7 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

MooBench (Variants)

Baseline
Regular instrumentation
Deactivated monitoring
Different monitoring configurations (e.g. different serialization)

8 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Prior Work on MooBench

Continuous measurement (Waller, Ehmke and Hasselbring,
2015)
Testing of replicability (Knoche and Eichelberger, 2017;
Knoche and Eichelberger, 2018)
Effects of multithreading (Waller and Hasselbring, 2015)

9 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Monitoring Frameworks

10 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

OpenTelemetry

“Ubiquitous“ telemetry ⇒ Support of a many languages
Supports variety of frameworks itself
Different exporters (Zipkin, Prometheus, Jaeger)

Instrumentation through javaagent
Configuration through command line, yaml file, ...

11 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

inspectIT

“Zero-configuration“ Java agent for performance collection
Supports variety of frameworks by usage of OpenCensus
Different exporters (Zipkin, Prometheus, Jaeger)

Configuration (through command line, yaml file, ...)
Scopes define measured methods
Rules define measurement metrics
Actions define processing on extracted data

12 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Measurement with MooBench

Workload

OpenTelemetry
Agent

inspectIT
Agent

Kieker
Agent

SUT

TCP Receiver ZipkinPrometheus

Hard Disc
Logging

13 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Overhead Comparison

14 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Setup

OpenJDK 11.0.11
Hardware

For replicability to older data: Raspberry Pi 4
Current desktop: i7-4770 CPU @ 3.40GHz with 16 GB RAM,
running Ubuntu 20.04

Workload sizes
Call tree depth 10 (default) for all configurations
Exponential growing call tree depth for TCP export

15 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Call Tree Depth 10 (Kieker)

Variant Raspberry Pi i7-4770
95 % CI σ 95 % CI σ

Baseline [1.5;1.5] 0.1 [0.057;0.058] 0.026
Kieker

Deactivated Probe [4.1;4.1] 7.5 [0.4;0.4] 7.1
DumpWriter [51.9;52.0] 14.6 [8.5;8.5] 12.2

Logging (Text) [743.3;799.4] 14315.8 [103.0;103.3] 56.4
Logging (Binary) [59.8;87.8] 7149.4 [3.4;3.4] 15.8

TCP [45.6;45.7] 14.6 [4.6;4.7] 10.4
Tabelle: Measurement Results for Kieker (in µs)

15 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Call Tree Depth 10 (Kieker)

Also deactivated probe has noticable overhead
Regular text logging is very inefficient
Fastest configuration for local processing: Binary Logging

16 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Call Tree Depth 10 (default)

OpenTelemetry
Variant Deactivated Zipkin Prometheus

Probe
Pi 4 CI [26.8;26.9] [53.4;53.6] [44.4;44.5]

σ 20.4 46.7 25.2
i7-4770 CI [4.9;5.0] [6.8;6.9] [6.9;6.9]

σ 4.1 8.5 4.9
inspectIT

Pi 4 CI [9.9;9.9] [97.2;97.8] [32.3;32.4]
σ 10.5 149.6 16.6

i7-4770 CI [1.3;1.4] [10.9;11.2] [4.0;4.0]
σ 8.2 57.4 4.1

Tabelle: Measurement Results for OpenTelemetry and inspectIT (in µs)

16 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Call Tree Depth 10 (default)

OpenTelemetry has lower overhead for Zipkin trace (spans)
export
inspectIT has lower overhead for metrics export and
deactivated probe
Deactivated pobe overheads are significantly higher than in
Kieker

17 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Growing Call Tree Depth

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 20 40 60 80 100 120 140

D
u
ra

ti
o
n
 µ

s

Call Tree Depth

Overview of Method Execution Durations

Baseline
Kieker (TCP)

inspectIT (Zipkin)
OpenTelemetry (Zipkin)

Abbildung: Overhead evolution with growing call tree depth

17 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Growing Call Tree Depth

Different writer configurations are not comparable
Kieker currently does not support aggregated metrics export
Only full trace export to Zipkin / TCP export comparable

18 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Summary

19 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Summary

Monitoring overhead needs to be as low as possible
MooBench compares Monitoring overhead of different
frameworks and monitoring configurations

MooBench was extended to support OpenTelemetry and
inspectIT
Measurement of traces by OpenTelemetry and inspectIT is
slower than with Kieker

20 / 20

MooBench Monitoring Frameworks Overhead Comparison Summary

Outlook

Benchmarking with more complex tree structure
Comparison of overhead for different frameworks, e.g. Jersey
Comparison of accuracy (How well does root cause analysis
algorithm X perform?)

	MooBench
	Monitoring Frameworks
	Overhead Comparison
	Summary

