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Why Overhead Comparison?

Performance measurement creates overhead
Instrumentation
Measurement
Serialization

⇒ Should be as low as possible
⇒ Replicable measurement provided by MooBench

Overhead is relevant
... for comparison of monitoring tools
⇒ this work
... for further reduction of monitoring overhead for continuous
root cause analysis in Peass
⇒ ongoing research
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MooBench
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Performance Measurement in JVM
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Performance Measurement in JVM

Non-deterministic effects influence performance
Just-in-Time-Compilation
Garbage collection
Memory fragmentation
...

Measurement process
Warmup iterations
Measurement iterations
Repetition inside VMs
Analysis of values by statistical test, e.g. T-Test
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MooBench (Measurement Process)
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MooBench (Variants)

Baseline
Regular instrumentation
Deactivated monitoring
Different monitoring configurations (e.g. different serialization)
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Prior Work on MooBench

Continuous measurement (Waller, Ehmke and Hasselbring,
2015)
Testing of replicability (Knoche and Eichelberger, 2017;
Knoche and Eichelberger, 2018)
Effects of multithreading (Waller and Hasselbring, 2015)
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Monitoring Frameworks
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OpenTelemetry

“Ubiquitous“ telemetry ⇒ Support of a many languages
Supports variety of frameworks itself
Different exporters (Zipkin, Prometheus, Jaeger)

Instrumentation through javaagent
Configuration through command line, yaml file, ...
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inspectIT

“Zero-configuration“ Java agent for performance collection
Supports variety of frameworks by usage of OpenCensus
Different exporters (Zipkin, Prometheus, Jaeger)

Configuration (through command line, yaml file, ...)
Scopes define measured methods
Rules define measurement metrics
Actions define processing on extracted data
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Measurement with MooBench
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Overhead Comparison
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Setup

OpenJDK 11.0.11
Hardware

For replicability to older data: Raspberry Pi 4
Current desktop: i7-4770 CPU @ 3.40GHz with 16 GB RAM,
running Ubuntu 20.04

Workload sizes
Call tree depth 10 (default) for all configurations
Exponential growing call tree depth for TCP export
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Call Tree Depth 10 (Kieker)

Variant Raspberry Pi i7-4770
95 % CI σ 95 % CI σ

Baseline [1.5;1.5] 0.1 [0.057;0.058] 0.026
Kieker

Deactivated Probe [4.1;4.1] 7.5 [0.4;0.4] 7.1
DumpWriter [51.9;52.0] 14.6 [8.5;8.5] 12.2

Logging (Text) [743.3;799.4] 14315.8 [103.0;103.3] 56.4
Logging (Binary) [59.8;87.8] 7149.4 [3.4;3.4] 15.8

TCP [45.6;45.7] 14.6 [4.6;4.7] 10.4
Tabelle: Measurement Results for Kieker (in µs)
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Call Tree Depth 10 (Kieker)

Also deactivated probe has noticable overhead
Regular text logging is very inefficient
Fastest configuration for local processing: Binary Logging
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Call Tree Depth 10 (default)

OpenTelemetry
Variant Deactivated Zipkin Prometheus

Probe
Pi 4 CI [26.8;26.9] [53.4;53.6] [44.4;44.5]

σ 20.4 46.7 25.2
i7-4770 CI [4.9;5.0] [6.8;6.9] [6.9;6.9]

σ 4.1 8.5 4.9
inspectIT

Pi 4 CI [9.9;9.9] [97.2;97.8] [32.3;32.4]
σ 10.5 149.6 16.6

i7-4770 CI [1.3;1.4] [10.9;11.2] [4.0;4.0]
σ 8.2 57.4 4.1

Tabelle: Measurement Results for OpenTelemetry and inspectIT (in µs)
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Call Tree Depth 10 (default)

OpenTelemetry has lower overhead for Zipkin trace (spans)
export
inspectIT has lower overhead for metrics export and
deactivated probe
Deactivated pobe overheads are significantly higher than in
Kieker
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Growing Call Tree Depth
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Abbildung: Overhead evolution with growing call tree depth
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Growing Call Tree Depth

Different writer configurations are not comparable
Kieker currently does not support aggregated metrics export
Only full trace export to Zipkin / TCP export comparable
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Summary
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Summary

Monitoring overhead needs to be as low as possible
MooBench compares Monitoring overhead of different
frameworks and monitoring configurations

MooBench was extended to support OpenTelemetry and
inspectIT
Measurement of traces by OpenTelemetry and inspectIT is
slower than with Kieker
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Outlook

Benchmarking with more complex tree structure
Comparison of overhead for different frameworks, e.g. Jersey
Comparison of accuracy (How well does root cause analysis
algorithm X perform?)
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