

Benchmarking Neural Networks on Heterogeneous Hardware Resources

Christopher Hesse, Holger Eichelberger

eichelberger@sse.uni-hildesheim.de,
christopher.hesse@aptiv.com

Software Systems Engineering University of Hildesheim

HAISEM-Lab

www.sse.uni-hildesheim.de

Benchmarking Neural Networks on Heterogeneous Hardware Resources

Motivation

- Artificial Intelligence (AI) is "everywhere"
- HAISEM-Lab (http://haisem-lab.de/)
 - BMBF founded AI lab
 - Hardware-optimized Artificial Intelligence Applications using modern Software Engineering Methods
 - Qualification and training for industry personnel
 - AI/Hardware/SE research
- Partners
 - University of Hannover (L3S, IMS)
 - University of Hildesheim (SSE)

2

Problem

- Hardware for Al
 - GPU servers (NVIDIA Tesla)
 - GPU developer boards, GPU laptops
 - FPGA servers (Maxeler, Intel Arria)
 - Unified memory (Apple M1)

How to compare NN performance (speed, energy) across **all** heterogeneous hardware resources?

• Existing approaches: At least one hardware type missing

Primer on Neural Networks

- Neuron: "fancy weighted sum"
 - "perceptron": f is a threshold

- at least two hidden layers

Approach

- Focus: Convolutional Neural Networks
 - "What's in this image?"

11/10/2021

Approach

- Bottom-Up
 - Microbenchmarks
 - Convolution
 - Activation
 - Pooling
 - Macrobenchmarks
 - Training
 - Inference
- Methodology
 - Varying parameters, e.g. input size
 - Measure per iteration / benchmark
 - CPU/GPU time
 - Energy

Results - Microbenchmarks

11/10/2021

Benchmarking Neural Networks on Heterogeneous Hardware Resources

Results - Microbenchmarks

Results - Macrobenchmarks

Benchmarking Neural Networks on Heterogeneous Hardware Resources

Results - Macrobenchmarks

Conclusions & Lessons Learned

- Intel FPGA 7x 45x faster than Pro GPU
 - while using 10x less power
- Apple M1 3x 5x faster than current x86 CPU/GPU combo
 - while using 5x 10x less power
- Accelerator programming / DSL is awkward
- TensorFlow for M1 was (?) alpha quality
 - Microbench: M1 is most cost & energy effective

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

