Architecture Recovery from Fortran Code with Kieker
Symposium on Software Performance

Reiner Jung, Henning Schnoor,
Sven Gundlach, Wilhelm Hasselbring

8th November 2022

©i#: OceanDSL

Why do we do this

SUSTAINABLE
DEVELOPMENT

3_:4:.\‘/\".'!:

8

]
Qi

=
I
H

i O

2/17

Digital Twins

Digital Twin

e a model of the object
e an evolving set of data relating to the object

e a means of dynamically updating or adjusting the model in accordance with the data

[Wright and Davidson 2020]

3/17

Models we analyzed so far (1/2)

UVic (University of Victoria, ESM) [Weaver et al. 2001]

Models the complete earth

Includes atmosphere, oceans, ice, land, bio-geo-chemical processes in the ocean
Written in Fortran 77 and Fortran 90

No VCS, no centralized infrastructure

Self-made configuration and build system

MITgecm (MIT General Circulation Model, ESM) [Adcroft et al. 2022]
e Versatile model, can model the complete earth system
e Provides wide range on example models also used for testing
e Written in Fortran 77 and 90
e Uses git
e Feature model
e Self-made configuration and build system

4/17

Models we analyzed so far (2/2)

Shallow-Water-Model [Claus 2016]

e Written in Fortran 95 with modules
e Uses git

e Standard Makefile, uses autoconf, automake

5/17

Upcoming Models

ICON (Icosahedral Nonhydrostatic Model)

e Global weather model

e Deutscher Wetter Dienst (DWD)

ECHAMb

e Atmospheric general circulation model

e MPI for meteorology

Metos3D

e Marine/Ocean ecosystem model toolkit

e Partly in Python and Fortran

6/17

Overview Process

Configure Model

Understand and Instrument
Build Process Setup Parameters Scientific Model
Inspect
Recover Recover
Execute Model Architecture Interfaces Recovered

Architecture

7/17

Execute Model

Log events

e Kieker collector

e Netcat & Split nc -1 5678 | split -b 102400000 - log-

What is logged?

e Subroutine calls
e Function calls

e Procedure calls

8/17

Recover Architecture

Reconstruction

e Resolve operation and file names with addr2line
e Construct operation uses and calls from Kieker events
e Create type, assembly and deployment model based on operations

e Add and aggregate call information to the Kieker execution model

Component ldentification

1. Names of the files
2. Directory names of files

3. Fully qualified operation signatures in o-files, e.g., _module_MOD_operation_

= We can apply all methods in combination

9/17

Interface Discovery Strategies

Approaches

1. Large interface per component to component connection

e few interfaces
e different provided interfaces may share operations

2. One provided interface per component, multiple required interfaces

o fewest interfaces
e each component has only one provided interface
e can lead to wide interfaces

3. Provided interfaces have operations that are required by the same requiring components

e May create too many interfaces when different subsets of operations are used

10/17

Current Discovery Strategy

Provided Interfaces

e Identify for each operation all caller components
e Group all callees that have the same set of caller component

e Create a provided interface for each callee group

Required Interfaces

e Create one for each used provided interface by a component

e Link all caller that call callees of a provided interface to the corresponding required
interface

11/17

UVic Architecture

(¥ ryrrys H

12/17

UVic Architecture

= netcdf

common

embm

1|

mom

mtim

12/17

Common Component

Time Management

Main Program

&Data Load for \

ice and CO2

13/17

Energy-Moisture Balance Model (EMBM)

[Restart 10
mgrid embm_rest
. 1 modelI I—T%
rivmodel “ f}luxesT E% output I@I’T} mio
Primary
River model Fascade

14/17

Lessons Learned

Fortran

e F77 uses global symbols, no name spaces
e F95 can use modules, o-file symbols use FQN _module_MOD_operation_

e Names are case insensitive, o-file symbols are lower case with ’_? as prefix

Scientific Models

e Every scientific model has its own build system or use of build tools

e High degree of interconnection between components

15/17

Conclusions

Advantages of dynamic recovery

e Object files are sufficient

Debugging symbols are helpful
e Understanding code assembly and build procedure not necessary

Can show the number of calls in an interface to rank functions

e Not limited to Fortran

Fast setup

Disadvantages

e Requires a running executable
e Can result in a lot of monitoring data

e Cannot cover dataflow (but our static recovery does)

16/17

Bibliography i

[Adcroft, Alistair et al. (2022). MITgem user Manual. DOI: 10.5281/zenodo . 6498956.

[§ Claus, Martin (Jan. 2016). “Shallow Water Models of the Atlantic Equatorial Deep Jets.”
PhD thesis. Christian-Albrechts-Universitit Kiel.

[§ Weaver, Andrew J et al. (2001). “The UVic Earth System Climate Model: Model
description, climatology, and applications to past, present and future climates.” In:
Atmosphere-Ocean 39.4. DOI: 10.1080/07055900.2001.9649686.

[§ Wright, Louise and Stuart Davidson (Mar. 2020). “How to tell the difference between a
model and a digital twin." In: Advanced Modeling and Simulation in Engineering Sciences
7.1, p. 13. ISSN: 2213-7467. DOI: 10.1186/s40323-020-00147-4.

17/17

https://doi.org/10.5281/zenodo.6498956
https://doi.org/10.1080/07055900.2001.9649686
https://doi.org/10.1186/s40323-020-00147-4

	Architecture Recovery from Fortran Code with Kieker
	Why do we do this?
	References

