Architecture Recovery from Fortran Code with Kieker

Symposium on Software Performance

Reiner Jung, Henning Schnoor, Sven Gundlach, Wilhelm Hasselbring

8th November 2022

Why do we do this

Digital Twins

Digital Twin

- a model of the object
- an evolving set of data relating to the object
- a means of dynamically updating or adjusting the model in accordance with the data

[Wright and Davidson 2020]

Models we analyzed so far (1/2)

UVic (University of Victoria, ESM)

[Weaver et al. 2001]

- Models the complete earth
- Includes atmosphere, oceans, ice, land, bio-geo-chemical processes in the ocean
- Written in Fortran 77 and Fortran 90
- No VCS, no centralized infrastructure
- Self-made configuration and build system

MITgcm (MIT General Circulation Model, ESM)

[Adcroft et al. 2022]

- Versatile model, can model the complete earth system
- Provides wide range on example models also used for testing
- Written in Fortran 77 and 90
- Uses git
- Feature model
- Self-made configuration and build system

Models we analyzed so far (2/2)

Shallow-Water-Model

[Claus 2016]

- Written in Fortran 95 with modules
- Uses git
- Standard Makefile, uses autoconf, automake

Upcoming Models

ICON (Icosahedral Nonhydrostatic Model)

- Global weather model
- Deutscher Wetter Dienst (DWD)

ECHAM5

- Atmospheric general circulation model
- MPI for meteorology

Metos3D

- Marine/Ocean ecosystem model toolkit
- Partly in Python and Fortran

Overview Process

Execute Model

Log events

- Kieker collector
- Netcat & Split nc -1 5678 | split -b 102400000 log-

What is logged?

- Subroutine calls
- Function calls
- Procedure calls

Recover Architecture

Reconstruction

- Resolve operation and file names with addr2line
- Construct operation uses and calls from Kieker events
- Create type, assembly and deployment model based on operations
- Add and aggregate call information to the Kieker execution model

Component Identification

- 1. Names of the files
- 2. Directory names of files
- 3. Fully qualified operation signatures in o-files, e.g., _module_MOD_operation_
- ⇒ We can apply all methods in combination

Interface Discovery Strategies

Approaches

- 1. Large interface per component to component connection
 - few interfaces
 - different provided interfaces may share operations
- 2. One provided interface per component, multiple required interfaces
 - fewest interfaces
 - each component has only one provided interface
 - can lead to wide interfaces
- 3. Provided interfaces have operations that are required by the same requiring components
 - May create too many interfaces when different subsets of operations are used

Current Discovery Strategy

Provided Interfaces

- Identify for each operation all caller components
- Group all callees that have the same set of caller component
- Create a provided interface for each callee group

Required Interfaces

- Create one for each used provided interface by a component
- Link all caller that call callees of a provided interface to the corresponding required interface

UVic Architecture

UVic Architecture

Common Component

Energy-Moisture Balance Model (EMBM)

Lessons Learned

Fortran

- F77 uses global symbols, no name spaces
- F95 can use modules, o-file symbols use FQN _module_MOD_operation_
- Names are case insensitive, o-file symbols are lower case with '_' as prefix

Scientific Models

- Every scientific model has its own build system or use of build tools
- High degree of interconnection between components

Conclusions

Advantages of dynamic recovery

- Object files are sufficient
- Debugging symbols are helpful
- Understanding code assembly and build procedure not necessary
- Can show the number of calls in an interface to rank functions
- Not limited to Fortran
- Fast setup

Disadvantages

- Requires a running executable
- Can result in a lot of monitoring data
- Cannot cover dataflow (but our static recovery does)

Bibliography i

- Adcroft, Alistair et al. (2022). MITgcm user Manual. DOI: 10.5281/zenodo.6498956.
- Claus, Martin (Jan. 2016). "Shallow Water Models of the Atlantic Equatorial Deep Jets." PhD thesis. Christian-Albrechts-Universität Kiel.
- Weaver, Andrew J et al. (2001). "The UVic Earth System Climate Model: Model description, climatology, and applications to past, present and future climates." In: *Atmosphere-Ocean* 39.4. DOI: 10.1080/07055900.2001.9649686.
- Wright, Louise and Stuart Davidson (Mar. 2020). "How to tell the difference between a model and a digital twin." In: *Advanced Modeling and Simulation in Engineering Sciences* 7.1, p. 13. ISSN: 2213-7467. DOI: 10.1186/s40323-020-00147-4.