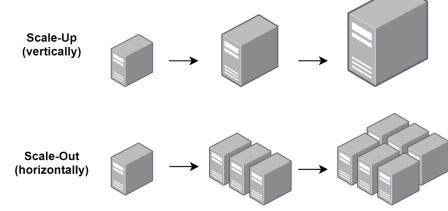
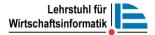
#### 13th Symposium on Software Performance

8th November 2022


# Predicting Scaling Efficiency of Distributed Stream Processing Systems via Task Level Performance Simulation


Johannes Rank, Maximilian Barnert, Andreas Hein, Helmut Krcmar

Chair for Information Systems: Lab Krcmar Technical University of Munich johannes.rank@tum.de

#### **Motivation**

- Distributed stream processing systems are the backbone of many Big Data implementations and can reach a considerable size in terms of cores / workers
- CPU efficiency becomes increasingly important from both, an environmental as well as a cost perspective
- Most streaming systems allow for flexibility regarding their scaling direction
- Most DevOps do not know what scaling actually means in terms of CPU efficiency?



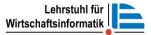


#### **Example – Azure Hosting**

Which Architecture would you **choose as a manager**?

2x Instance "A4 v2" (4 cores, 8GB RAM, 0.286\$/h)

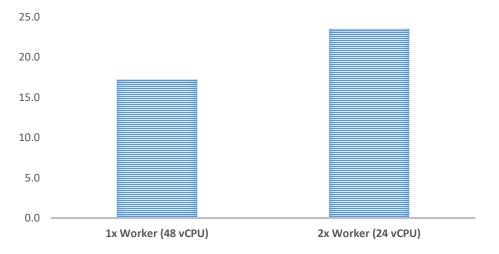
Scale-Out


417.56 \$ per month

1x Instance "A8 v2" (8 cores, 16GB RAM, 0.600 \$/h)

438.00 \$ per month

Scale-Up


Scale-Out architecture 4.66% cheaper



#### **Example – CPU Efficiency**

Which Architecture would you choose as a manager?

- Example: Yahoo Streaming Benchmark with Apache Flink
- Workload: 600k events/s



#### AVERAGE CORES UTILIZED

#### Scale-Up architecture 26.79% more efficient



### **Paper Topic**

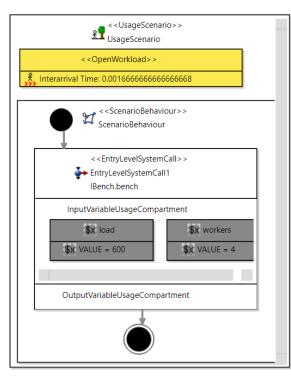
**Question**: How efficient are 3, 4, 5 ... N workers?

Performing and comparing N measurments is not efficient

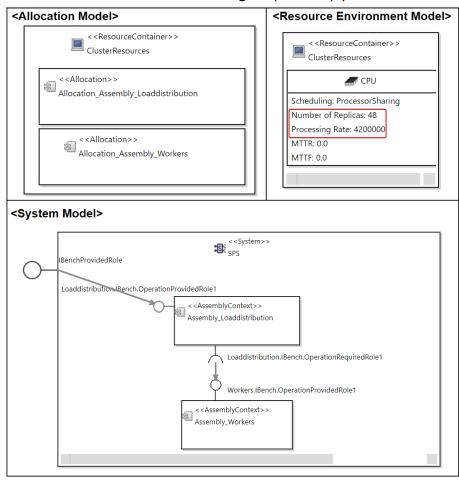
**Idea**: Performance Simulation of different cluster sizes (with PCM)

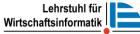
**Assumption**: We have a fixed number of cores and want to simulate how many workers we should distribute them to (e.g. 2x C6 or 1x C12)

**PCM Design Requirement**: Accurate approach that is quick&simple to implement


- No automation is in place that allows an easy PCM generation!
- One manually created PCM model that allows to predict different cluster sizes, without changing the model
  - > No changes in the ResourceEnvironment, Allocation or System Model
  - > Cluster size is specified as an input parameter of the Usage model
- Despite the quick&simple approach, the results should provide sufficient accuracy

quick&simple


### **PCM Design Requirement**


Simulation Example:

- Workload = 600k events/s
- Workers = 4 (each 12vCPU)

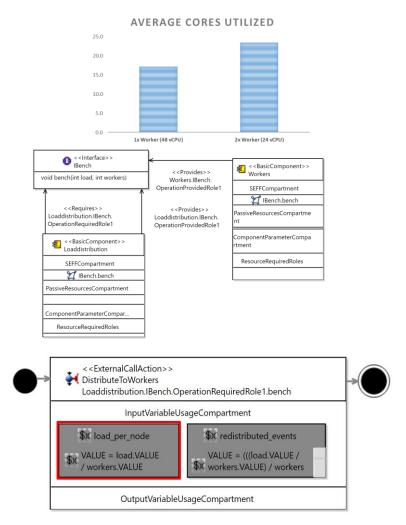


12x IBM Power9 CPU cores (4.2 GHz) Simultaneous Multithreading 4 (SMT4) ) 48 vCPU





#### **Dynamic Resource Demands**

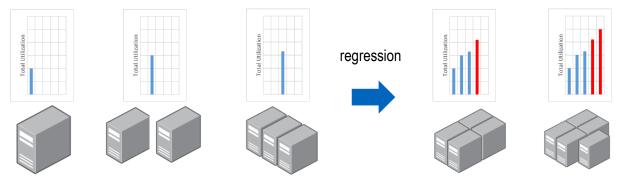

 We know that the Resource Demands change in dependence of the number of workers

- Usually we would need to model each cluster configuration as a separate combination Allocation+ResourceEnv+System Model
- Instead we model the Resource Demand in dependence of the received events (the more events a node receives the more efficient it works)

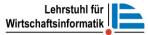
9.1259 \* load\_per\_node. VALUE + 326.7 <CP ...</p>

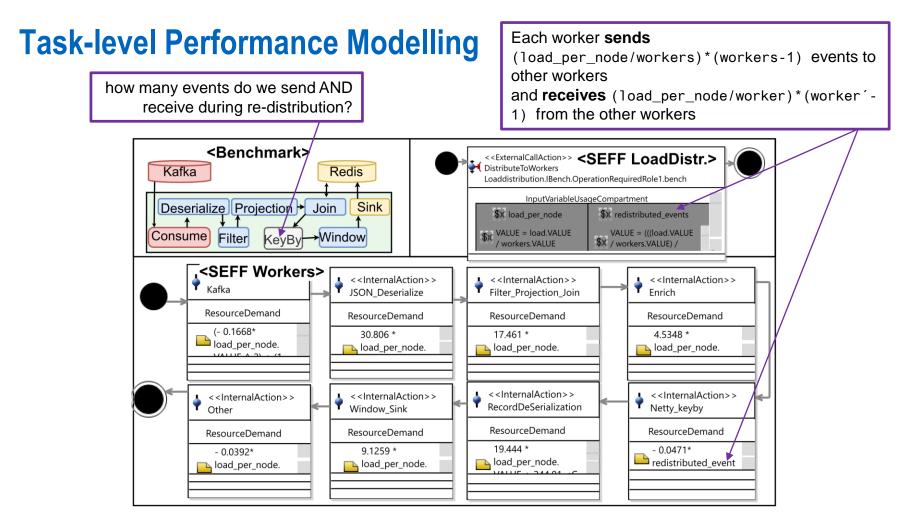
Therefore, we need a virtual load balancer that divides the total load through the number of workers

#### quick&simple







### **Task-Level Performance Modelling**

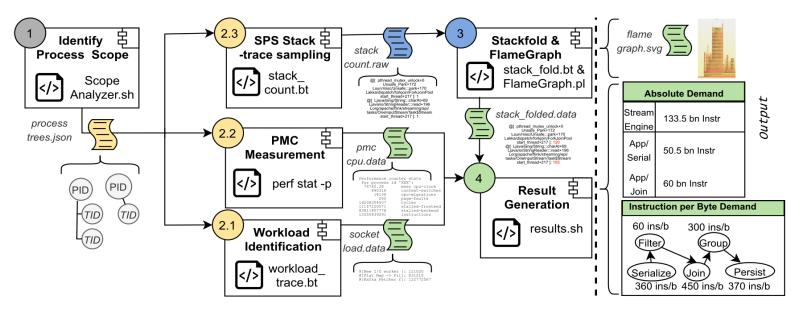



 The probably simplest approach would be to measure the total CPU utilization for a few cluster configurations and to perform a regression analysis



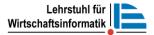
- However, looking only at the total utilization is not accurate enough (abstraction level too high)
  - Each streaming task has its own efficiency curve that can either grow linear, logarithmic, polynomial or exponential to the workload.
  - The PCM Resource Effect Specification will model each task as an internal action with its own ResourceDemand





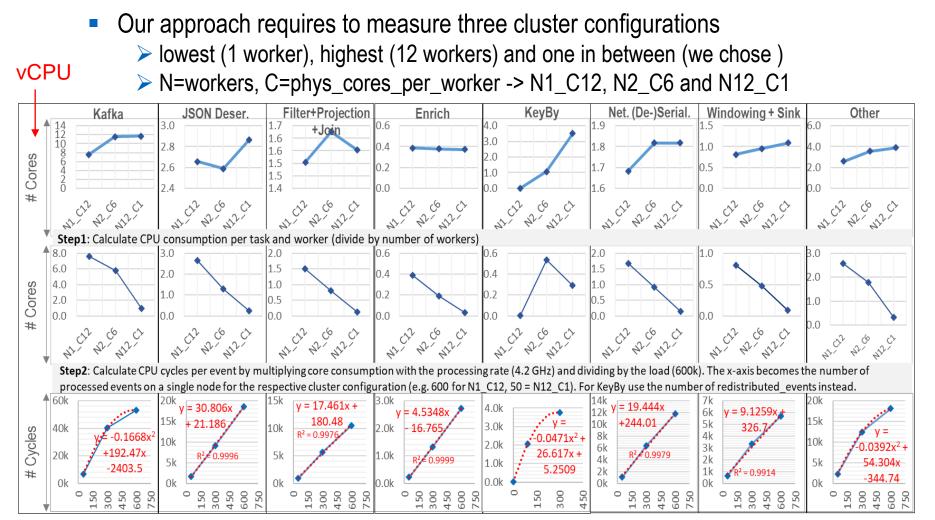

> How to get the parametrization in dependence of the workers / load?

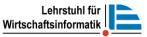
#### **Task-level Measurment**


accurate

Our toolchain proposed in (Rank, et al. 2020) profiles applications with BPF and combines the results with PMU measurments<sup>1</sup>




This way we get the consumed CPU cycles for each streaming task

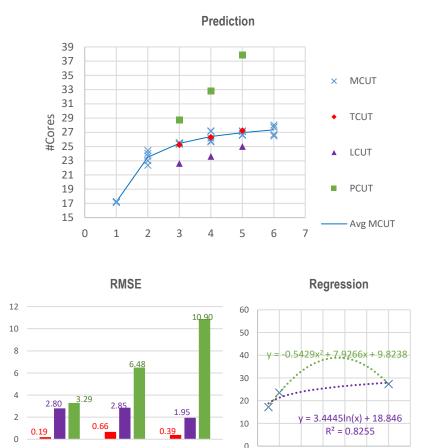

<sup>&</sup>lt;sup>1</sup> Rank, J., et al. (2020). "A Dynamic Resource Demand Analysis Approach for Stream Processing Systems." Softwaretechnik-Trends 40(3): 40-42.

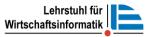


## **Task-level Parametrization Approach**









## Experiment

- "quick&simple"
  - ✓ PCM Model
  - Required model changes to simulate different cluster sizes
  - ✓ 3x Measurements for parametrization
  - Profiling approach (fully automated)

#### "accurate"

- Does the task-level prediction perform better?
- Baseline: More accurate than a simple regression approach (that only looks at the total CPU consumption) based on the same number of measurments
- Predict N3, N4, N5





10

12 14

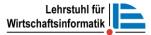
N3 C4

TCUT

N4 C3

LCUT

N6 C2

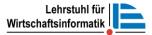

PCUT

0 2 4 6 8

#### **Conclusion and Limitation**

- Fast and easy PCM based prediction approach
- Achieves highly accurate results
- Can be applied to running systems (no instrumentation) required

- For the experiment we assumed a constant load (600k events/s). We did not test how accurate the prediction works for different load levels
- We only scaled our cluster from 1 to 12 worker nodes. We did not test how accurate the prediction works for even bigger cluster sizes

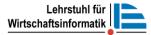



# Thank you for your attention!



## **Questions?**

mail: johannes.rank@tum.de

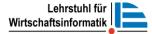



### **Azure Hosting**

| Azure                                                        |                                 |                            | Vertrieb kontaktie               | ren Kostenloses Kon                                            |
|--------------------------------------------------------------|---------------------------------|----------------------------|----------------------------------|----------------------------------------------------------------|
| ∧ Virtuelle Computer                                         | ① 1 A8 v2 (8 vCPUs, 16 GE       | RAM) × 730 Stunden (Nutz 🕞 | Vorauszahlung: 0,00 \$           | ✓         ✓         ✓         Ⅲ           Monatlich: 438,00 \$ |
| Virtuelle Computer                                           |                                 |                            |                                  |                                                                |
| Region:                                                      | Betriebssystem:                 | Тур:                       | Tarif:                           |                                                                |
| West US                                                      | ~ Windows                       | ✓ (Nur Betriebssystem)     | ✓ Standard                       | ~                                                              |
| Kategorie:<br>All                                            | Instanzreihe:                   | NSTANZ:                    | GB RAM, 80 GB temporärer Speiche | r, 0,600 \$/Stunde 🛛 🗸                                         |
| Virtuelle Maschinen                                          |                                 |                            |                                  |                                                                |
| 1                                                            | ≎ 🗙 730 ≎ Stunden               | ~                          |                                  |                                                                |
| Einsparungsmöglichkeiten<br>Erkunden Sie Preismodelle, um If | nre Azure-Kosten zu optimieren. | tere Informationen         |                                  |                                                                |

#### https://azure.microsoft.com/de-de/pricing/calculator/

(04.11.2022)




### **Azure Hosting**

| Azure                                  |                     |                         |               |                                    |               | Vertrieb kontaktieren | Kostenloses Kon     |
|----------------------------------------|---------------------|-------------------------|---------------|------------------------------------|---------------|-----------------------|---------------------|
|                                        |                     |                         |               |                                    |               | (                     |                     |
| <ul> <li>Virtuelle Computer</li> </ul> |                     | (i) 2 A4 v2 (4 vCPUs, 8 | 3 GB RAM) × 7 | 30 Stunden (Nutzu 💿 📋              | Vorauszahl    | lung: 0,00 \$ Mo      | onatlich: 417,56 \$ |
| Virtuelle Comp                         | uter                |                         |               |                                    |               |                       |                     |
| Region:                                |                     | Betriebssystem:         |               | Тур:                               |               | Tarif:                |                     |
| West US                                | ~                   | Windows                 | ~             | (Nur Betriebssystem)               | ~             | Standard              | ~                   |
| Kategorie:                             | ~                   | Instanzreihe:           | ~             | INSTANZ:<br>A4 v2: 4 Kerne, 8 GB R | AM, 40 GB tem | porärer Speicher, 0,2 | 86 \$/Stunde        |
| Virtuelle Maschin                      | nen                 |                         |               |                                    |               |                       |                     |
|                                        | 2 0                 | 730 ≎ Stunde            | n v           |                                    |               |                       |                     |
| Einsparungsmöglic                      | hkeiten             |                         |               |                                    |               |                       |                     |
| Erkunden Sie Preismo                   | delle, um Ihre Azur | e-Kosten zu optimieren. | Weitere Infor | mationen                           |               |                       |                     |

https://azure.microsoft.com/de-de/pricing/calculator/

(04.11.2022)

