Interoperability From OpenTelemetry to Kieker:

Demonstrated as Export from the Astronomy Shop

David Georg Reichelt
Lancaster University Leipzig /
URZ Leipzig

Abstract

The observability framework Kieker provides a range
of analysis capabilities, but it is currently only able to
instrument a smaller selection of languages and tech-
nologies, including Java, C, Fortran, and Python. The
OpenTelemetry standard aims for providing reference
implementations for most programming languages, in-
cluding C# and JavaScript, that are currently not
supported by Kieker. In this work, we describe how
to transform OpenTelemetry tracing data into the
Kieker framework. Thereby, it becomes possible to
create for example call trees from OpenTelemetry in-
strumentations. We demonstrate the usability of our
approach by visualizing trace data of the Astronomy
Shop, which is an OpenTelemetry demo application.

1 Introduction

To understand the behavior of a software system,
observability tools are used. Different observability
tools provide different capabilities: While Kieker [9]
has various analysis capabilities and is known for its
low overhead [3], OpenTelemetry is the de-facto stan-
dard for obtaining data and standard implementa-
tions provide agents for a variety of languages [5].
To make them interoperable, three steps are neces-
sary: (1) Transformation of Kieker traces into the
OpenTelemetry format, (2) Transformation of Open-
Telemetry traces into the Kieker format, and (3) Us-
age of native OpenTelemetry data formats in Kieker.
The first step has been done in our prior work [7].

In this work, we present the implementation of the
second step. By transformation of OpenTelemetry
traces into Kieker,! we make it possible to use Open-
Telemetries rich agent landscape within the Kieker
analysis framework. Thereby, it becomes also fea-
sible to do a range of Kieker analysis. Our analy-
sis shows a structural difference between Kieker and
OpenTelemetry: While Kieker traces are synchronous
traces, supporting the observation of one control flow
through a program, OpenTelemetry aims at represent-
ing asynchronous traces, supporting the observation
of microservice calls. This results in different data
structures and therefore limited compatibility of the
concepts.

ITraces are recevied via gRPC, e.g., from an agent.

Shinhyung Yang
Kiel University

Wilhelm Hasselbring
Kiel University

The remainder of the paper is structured as fol-
lows: First, we introduce the data formats of Kieker
and OpenTelemetry. Based on this, we describe pos-
sible approaches for conversion of the data formats.
Subsequently, we demonstrate the application of the
conversion within the OpenTelemetry demo. After-
wards, we compare our approach to related work. Fi-
nally, we give a summary and an outlook.

2 Data Formats

In this section, we describe Kieker’s and OpenTeleme-
try’s data formats.

Kieker Within Kieker’s monitoring part, the so-
called monitoring log? is obtained. This monitoring
log is stored somewhere persistently to allow further
analysis. These analyses consist of a variety of stages,
that first read the monitoring data, transform them
into traces and then provide analysis results, e.g., call
trees and component graphs.

This architecture relies heavily on the data formats
allowed within the monitoring log. These data for-
mats are created using the Instrumentation Record
Languages (IRL).> Based on an Xtext definition of
records, the IRL allows to create source code for the
usage of these records within the Kieker monitoring
and analysis components.

OpenTelemetry OpenTelemetry provides data
format standards for the three pillars of observability:
Logs, metrics, and traces. Logs are timestamped
text records, metrics are quantitive measurements of
a system, and traces are a sequence of events which
make it possible to follow an execution path. All
OpenTelemetry data are serialized with protobuf
serialization, ensuring high compression and low
overhead for serialization and deserialization.*

For observability, we consider traces the most
important pillar. A trace consists of spans, which
itself contains a name, a start and an end times-
tamp, a list of fields, a list of attributes and a list of

2In OpenTelemetry’s terminology, this contains both tracing
and monitoring information.

Shttps://github.com/kieker-monitoring/
instrumentation-languages/wiki

“https://github.com/open-telemetry/
opentelemetry-proto

https://github.com/kieker-monitoring/instrumentation-languages/wiki
https://github.com/kieker-monitoring/instrumentation-languages/wiki
https://github.com/open-telemetry/opentelemetry-proto
https://github.com/open-telemetry/opentelemetry-proto

OpenTelemetry Kieker
’ startEpochNanos | tin ‘
’ endEpochNanos \ tout ‘
’ parent ﬁ:—" €58 ‘
| name L\‘T eoi ‘
’ net.sock.peer.addr L\‘)‘ signature ‘
’ net.peer.name r“—j hostname ‘

Figure 1: Mapping of Fields

events. The attributes are arbitrary key/value map-
pings, e.g., net.sock.peer.addr might be mapped to
127.0.0.1. By the trace context level W3C recom-
mendation,® that is implemented by OpenTelemetry,
span contexts can be obtained across services.

Besides standard information like start and end
time, spans can also contain attributes. These at-
tributes are key-value pairs. The OpenTelemetry se-
mantic conventions provide guidelines on how these
attributes should be used.%

3 Data Conversion

For the basic data, most OpenTelemetry fields can
just be mapped to their counterparts in Kieker. For
the control flow, a more sophisticated approach is nec-
essary.

Mappings For converting the data, most conver-
sions are just simple renamings: The time stamps and
the signature can just be renamed. The spans name is
not necessarily a method call, it can also be for exam-
ple an HTTP call; however, using the name as signa-
ture is the best mapping that can be used here. Fur-
thermore, the hostname can be created from a com-
bination of attributes defined in the OpenTelemetry
semantic conventions. Figure 1 represents the map-
ping of fields.

Control Flow For the control flow, OpenTeleme-
try and Kieker contained not fully compatible
concepts: OpenTelemetry represents asynchronous
traces, where every span is part of a parent span. One
parent span might have multiple child spans taking
place at the same time, and the child span that has
been started first might end after the child span that
has been started second.

In contrast, Kieker represents synchronous traces,
where only one call can take place at the same time.
If parallel processing happens, this is represented by
separate traces. Internally, Kieker stores an execution
order index (eoi) and the execution stack size (ess) of
each invocation, which makes it fast to persist the cur-
rent tracing situation within the tracing agent. The
ess is only allowed to increase by 1, which happens if

Shttps://www.w3.org/TR/trace-context—2/
Shttps://opentelemetry.io/docs/specs/semconv/
general/attributes/

a method calls a child method.

While OpenTelemetry represents the control flow
using a parent reference, Kieker stores the ess and
eoi of each invocation. OpenTelemetry’s implementa-
tion thereby supports asynchronous calls within their
traces, Kieker’s implementation does not make it nec-
essary to have references in serialized data, which re-
duces the overhead during tracing.

Since Kieker
assumes that traces
are sequential, it
checks whether
parents can be
assigned correctly.
This process breaks
in situations like
the one depicted in
Figure 2: Here, a
root method calls
calll and call2 D i
asynchronously. e----
calll returns, but D 7?7 T
call?2 still goes on.
Later, the root span
calls call3, and
call2 calls call4. The spans are ordered by their
starting timestamp. Kieker would usually try to
assign call4 to a parent, but since call3 already
started, there is a gap in the ess by two, which is a
sign of an inconsistent trace.

To overcome this problems, there are four main so-
lutions: (1) Linearize the traces: The calls could be
located next to their caller, regardless of when they
happen. While this would remove the issue, it would
require storing all spans as long as there could be a po-
tential child span arriving, which would increase the
resource usage of the trace receiver heavily. (2) Di-
rectly convert the traces: Instead of storing traces
as Kieker records into the monitoring log and load-
ing them, OpenTelemetry traces could be transformed
into Kieker’s ExecutionTrace directly. This would
break the basic split of Kieker’s monitoring and anal-
ysis components. (3) Create an additional record that
represents asynchronous spans, and can be persisted,
loaded and analysed with separate Kieker implemen-
tations. (4) Mark traces as asynchronous: Mark a
trace as asynchronous during execution and change
the parent assignment if this flag is activated.

Solution (1) is unacceptable due to the resource
usage and solution (2) is unacceptable since it would
make repeated analyses impossible. Solution (3) is
possible, but would require rewriting big parts of
Kieker’s analysis pipelines. Therefore, for now, we
decied to go with option (4). This requires specifying
--asynchronousTrace to kieker-trace-analysis
when an OpenTelemetry trace is loaded into it.

This flag is necessary to process all asynchronous
traces within the kieker-trace-analysis. For

[root] |s1]| [S2] |54]
call1()

call2()

call4()

Figure 2: Unrepresentable
Parallel Trace

https://www.w3.org/TR/trace-context-2/
https://opentelemetry.io/docs/specs/semconv/general/attributes/
https://opentelemetry.io/docs/specs/semconv/general/attributes/

@8:grpc.oteldemo.RecommendationService
ListRecommendations()

_— f\

@9:.oteldemo. RecommendationService @2:.dns @3:.tcp
.ListRecommendations() Llookup() .connect()

@2:.dns
lookup()

@3:.tcp
.connect()

///3712/
@12:grpc.oteldemo.ProductCatalogService

.GetProduct()
1 1 12

@14:oteldemo.ProductCatalogService
ListProducts()

@14:oteldemo.ProductCatalogService
.GetProduct()

Figure 3: Part of Call Tree

strictly synchronous traces, e.g., the traces from
MooBench, this is not necessary. For traces from mi-
croservice applications like the TeaStore [1], the As-
tronomy shop or the T2 Shop [4], it will always be
necessary to set the -—asynchronousTrace flag.

4 Case Study: Visualizing Astronomy
Shop Traces

The astronomy shop is the default demo application
for OpenTelemetry-related tools.” It consists of 14
services written in 11 different languages, which makes
it challenging to instrument them and to establish
connections among the agents. Kieker is not able to
instrument .NET and TypeScript, therefore, it could
not be used to instrument the astronomy shop; how-
ever, OpenTelemetry’s instrumentation is able to do
so. To showcase our data transformation, we started
the astronomy shop with instrumentation and acti-
vated our Kieker-otel-transformer. Afterwards, we vi-
sualized the obtained trace data using Kieker’s trace
analysis tool. Figure 3 shows a part of the created
call tree, which visualized the calls from two different
services, the product and the recommendation service.

5 Related Work

Various works exist that examine the transformation
of OpenTelemetry traces. Weber et al. [8] exam-
ine the interoperability of OpenTelemetry and Palla-
dio. In order to continuously predict the performance,
they generate Palladio models based on OpenTeleme-
try. TraceZip is an approach for storing OpenTeleme-
try data in a compressed format [6]. Thereby, they
are able to reduce the memory requirement within a
TrainTicket-based benchmark by up to 33.8%. Ad-
ditionally, the throughput is increased, at the cost of
increased CPU utilization due to compression. These
works process OpenTelemetry traces, but none of
them is able to execute the Kieker analysis with Open-
Telemetry traces. Additionaly, there is research on
model transformation in general. Groner et al. [2]
research the view of developers on data model trans-
formations. They find that more than half of the par-
ticipants already tried to improve the performance of
their transformations. While we focused on imple-
menting a prototype in this work, examining the per-
formance of different implementations of the transfor-
mation would be valuable future work.

"https://github.com/open-telemetry/
opentelemetry-demo

6 Summary and Outlook

In this work, we discussed how to achieve the abil-
ity to use OpenTelemetry data in the Kieker analysis
pipeline. The main issue is the different purpose of
the data formats: While Kieker represents sequen-
tial traces, OpenTelemetry represents asynchronous
traces. We overcome this by marking traces as asyn-
chronous. Thereby, we made it possible to analyse
the OpenTelemetry tracing data from the Astronomy
Shop using Kieker. This was the second step of our
efforts to make Kieker and OpenTelemetry interoper-
able. The final step is to support the OpenTelemetry
data format fully within Kieker, which requires re-
writing parts of the analysis pipeline. Another pos-
sible work could be the combination of traces: To
have low overhead, applications could be traced in-
side with Kieker and outside of the application, Open-
Telemetry could be used to trace the service calls. By
this approach, a combination of Kieker’s low-overhead
and OpenTelemetry’s widespread applicability could
be achieved.

References

[1] S. Eismann et al. “TeaStore: A Micro-Service Reference
Application for Cloud Researchers”. In: 2018 IEEE/ACM
International Conference on Utility and Cloud Comput-
ing Companion. IEEE, Dec. 2018. por1: 10. 1109 /ucc -
companion.2018.00021.

[2] R. Groner et al. “An exploratory study on performance en-
gineering in model transformations”. In: ICMDELS. 2020,
pp- 308-319. DOI: 10.1145/3365438.3410950.

[3] D. G. Reichelt, S. Kiihne, and W. Hasselbring. “Overhead
Comparison of OpenTelemetry, inspectIT and Kieker”. In:
SSP 2021. 2021. URL: https://ceur-ws.org/Vol-3043/.

[4] S. Speth, S. StieB, and S. Becker. “A saga pattern mi-
croservice reference architecture for an elastic SLO viola-
tion analysis”. In: 2022 IEEE 19th ICSA-C. IEEE. 2022,
pp. 116-119.

[5] D. G. Blanco. Practical OpenTelemetry: Adopting
Open Observability Standards Across Your Organization.
APress, 2023. DOI: 10.1007/978-1-4842-9075-0.

[6] Z. Chen, J. Pu, and Z. Zheng. “Tracezip: Efficient Dis-
tributed Tracing via Trace Compression”. In: ISSTA
(2025), pp. 411-433. DOI: 10.1145/3728888.

[7] D. G. Reichelt et al. “Interoperability From Kieker to
OpenTelemetry: Demonstrated as Export to ExplorViz”.
In: SSP 2024. PID: 20.500.12116/46200. 2025, pp. 20-22.

[8] S. Weber, T. Weber, and J. Henf8l. “Integration of
performability-model extraction and performability pre-
diction in continuous integration/continuous delivery”. In:
SSP 2024. PID: 20.500.12116/46177. 2025, pp. 29-31.

[9] S. Yang et al. “The Kieker Observability Framework Ver-
sion 2”. In: Companion of the 16th ACM/SPEC Inter-
national Conference on Performance Engineering. 2025,
pp. 11-15. DOI: 10.1145/3680256.3721972.

https://github.com/open-telemetry/opentelemetry-demo
https://github.com/open-telemetry/opentelemetry-demo
https://doi.org/10.1109/ucc-companion.2018.00021
https://doi.org/10.1109/ucc-companion.2018.00021
https://doi.org/10.1145/3365438.3410950
https://ceur-ws.org/Vol-3043/
https://doi.org/10.1007/978-1-4842-9075-0
https://doi.org/10.1145/3728888
https://dl.gi.de/handle/20.500.12116/46200
https://dl.gi.de/handle/20.500.12116/46177
https://doi.org/10.1145/3680256.3721972

	Introduction
	Data Formats
	Data Conversion
	Case Study: Visualizing Astronomy Shop Traces
	Related Work
	Summary and Outlook

